• Home
  • finite element
    • List of Articles finite element

      • Open Access Article

        1 - Design, Optimization, and Finite Element Analysis of a Disk-Type Permanent Magnet Synchronous Motor
        S. A. Seyedi Seadati A. Halvaei Niasar
        This paper proposes to design, optimization and finite element simulation of an axial-flux, super-high speed, permanent magnet motor. The target motor with 0.5 hp rated power at speed of 60,000 rpm is used in a special industrial application. Based on nominal specificat More
        This paper proposes to design, optimization and finite element simulation of an axial-flux, super-high speed, permanent magnet motor. The target motor with 0.5 hp rated power at speed of 60,000 rpm is used in a special industrial application. Based on nominal specifications of the motor and using analytical relations of motor design, the design calculations, sizing and motor dimensions are investigated. Due to special application of the target motor that needs to the demanded torque with minimum current and copper losses, the dimensions and design specifications of motor is optimized via genetic algorithm based on a torque per ampere cost function. Optimization algorithm determines the optimum value of airgap, permanent magnet flux density, current density and turns number of stator windings. To demonstrate of analytical design and optimization results, using 3-D model of motor in Maxwell software, finite element analysis are carried out in Magneto-static and Transient modes. The FEM simulation results confirm the analytical design results. Moreover, they show the significant reduction in RMS current and copper loss at rated torque. There is a good agreement between the values of torque, motor efficiency, and flux density resulted from both methods. Manuscript profile
      • Open Access Article

        2 - Numerical modeling of folding Lali oil field Using Finite Element Method
        بهزاد زمانی
        Abstract This paper, a two-dimensional model of Lali oil field and faults of the northern and southern edges of the relations with ABAQUS software based on finite element methods. The model results from Geodynamic Geodesy area networks and the tectonic stress as a co More
        Abstract This paper, a two-dimensional model of Lali oil field and faults of the northern and southern edges of the relations with ABAQUS software based on finite element methods. The model results from Geodynamic Geodesy area networks and the tectonic stress as a constraint problem has been logged and various field formations on the elastic properties is considered. Fault surface is covered with contact elements that have authority to slip influence and change their shape and according to this properties in surface properties can well indicate the fault. Modeling results and geological criteria (Geodesy results) were compared and good coordination is observed between the results of the validation criteria. Results with a different coefficient of friction compared to the rate of displacement of GPS stations that coordination is more pronounced in the coefficient of friction 0.02. Displacement of southern edge of the fault in both friction 0.02 and 0.1 are obtained, respectively, 6.3 and 11 mm/year. The modeling results also showed that fault at different depths has different displacements and at depths less, move more expressive. Faults north and south edges of the integration Lali anticline that the most stress have focused on their , is Stress concentration and critical fault location of the fault. Manuscript profile
      • Open Access Article

        3 - A review of methods for determining contact stress in polymer base gears
        Rasool Molhsenzadeh
        Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operatio More
        Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operation without lubricants and low noise. However, the mechanical strength, thermal resistance and durability of polymer gears are lower than metal gears. The locking mechanism in metal gears is different from polymer gears. Among the important damages that lead to failure of polymer gears is thermal deformation, which does not exist in metal gears. In polymer gears, due to the viscoelastic and plastic nature of polymers, a lot of heat is generated during gear engagement and the temperature increases. An increase in temperature causes the ribs to soften and, as a result, change their shape. Pitting, fatigue and wear are other factors that lead to failure of polymer gears. The contact stress resulting from the torque applied to the gear plays the most important role in the intensity of each of the mentioned delays. Investigating the contact stress in polymer gears, including the challenges of industrialists and researchers, will provide a better understanding for the better design of these types of gears, as well as life expectancy. This research is a review of various methods for determining and checking contact stress, including Hertz numerical model, standard method and finite element method. Manuscript profile