• Home
  • Wireless Sensor Networks
    • List of Articles Wireless Sensor Networks

      • Open Access Article

        1 - Confronting DDoS Attacks in Software-Defined Wireless Sensor Networks based on Evidence Theory
        Nazbanoo Farzaneh Reyhaneh Hoseini
        DDoS attacks aim at making the authorized users unable to access the network resources. In the present paper, an evidence theory based security method has been proposed to confront DDoS attacks in software-defined wireless sensor networks. The security model, as a secur More
        DDoS attacks aim at making the authorized users unable to access the network resources. In the present paper, an evidence theory based security method has been proposed to confront DDoS attacks in software-defined wireless sensor networks. The security model, as a security unit, is placed on the control plane of the software-defined wireless sensor network aiming at detecting the suspicious traffic. The main purpose of this paper is detection of the DDoS attack using the central controller of the software-defined network and entropy approach as an effective light-weight and quick solution in the early stages of the detection and, also, Dempster-Shafer theory in order to do a more exact detection with longer time. Evaluation of the attacks including integration of data from the evidence obtained using Dempster-Shafer and entropy modules has been done with the purpose of increasing the rate of detection of the DDoS attack, maximizing the true positive, decreasing the false negative, and confronting the attack. The results of the paper show that providing a security unit on the control plane in a software-defined wireless sensor network is an efficient method for detecting and evaluating the probability of DDoS attacks and increasing the rate of detection of an attacker. Manuscript profile
      • Open Access Article

        2 - Cache Point Selection and Transmissions Reduction using LSTM Neural Network
        Malihe  Bahekmat Mohammad Hossein  Yaghmaee Moghaddam
        Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance More
        Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance of the reliability of transmission protocols when the packet is lost. On the other hand, the issue of energy consumption in this type of networks has become an important parameter in their reliability. In this paper, considering the energy constraints in the sensor nodes and the direct relationship between energy consumption and the number of transmissions made by the nodes, the system tries to reduce the number of transmissions needed to send a packet from source to destination as much as possible by optimal selection of the cache points and packet caching. In order to select the best cache points, the information extracted from the network behavior analysis by deep learning algorithm has been used. In the training phase, long-short term memory (LSTM) capabilities as an example of recurrent neural network (RNN) deep learning networks to learn network conditions. The results show that the proposed method works better in examining the evaluation criteria of transmission costs, end-to-end delays, cache use and throughput. Manuscript profile
      • Open Access Article

        3 - An Efficient Hybrid Routing Protocol in Underwater Wireless Sensor Networks
        J. Tavakoli N. Moghim
        Underwater Wireless Sensor Network (UWSN) is a kind of sensor networks that their operational fields have been developed under water in recent decades, although these networks deal with lots of challenges due to lack of the GPS1. These networks encounter researchers wit More
        Underwater Wireless Sensor Network (UWSN) is a kind of sensor networks that their operational fields have been developed under water in recent decades, although these networks deal with lots of challenges due to lack of the GPS1. These networks encounter researchers with many challenges by some limitations like high propagation delay, low bandwidth, high bit error rate, movement, limited battery and memory. In comparison with terrestrial sensor networks, sensors in the UWSN consume energy more because they use acoustic technology to communicate. Motivation of this research is proposing a routing protocol for underwater systematic settings with a limited energy. The settled sensor nodes in underwater cannot communicate directly with nodes near surface, so they need prepared multi hop communications with a proper routing plan. In wireless sensor networks, node clustering is a common way to organize data traffic and to decrease intra-network communications along with scalability and load balance improvement plus reducing of overall energy consumption of system. Therefore, in this article a fuzzy clustering routing protocol with data aggregation and balanced energy consumption for UWSNs is proposed. Simulation results show that in the proposed protocol, energy consumption becomes more uniformly distributed in the network and average of the nodes' energy usage and number of routing packets decreases and finally, packet delivery ratio and throughput are improved in the network in comparison with DABC3 and IDACB4 algorithms. Manuscript profile
      • Open Access Article

        4 - Autonomous Controlling System for Structural Health Monitoring Wireless Sensor Networks
        Sahand Hashemi Seyyed Amir Asghari Mohammad Reza Binesh Marvasti
        Nowadays, office, residential, and historic buildings often require special monitoring. Obviously, such monitoring involves costs, errors and challenges. As a result of factors such as lower cost, broader application, and ease of installation, wireless sensor networks a More
        Nowadays, office, residential, and historic buildings often require special monitoring. Obviously, such monitoring involves costs, errors and challenges. As a result of factors such as lower cost, broader application, and ease of installation, wireless sensor networks are frequently replacing wired sensor networks for structural health monitoring. Depending on the type and condition of a structure, factors such as energy consumption and accuracy, as well as fault tolerance are important. Particularly when wireless sensor networks are involved, these are ongoing challenges which, despite research, have the possibility of being improved. Using the Markov decision process and wake-up sensors, this paper proposes an innovative approach to monitoring stable and semi-stable structures, reducing the associated cost and error over existing methods, and according to the problem, we have advantages both in implementation and execution. Thus, the proposed method uses the Markov decision process and wake-up sensors to provide a new and more efficient technique than existing methods in order to monitor the health of stable and semi-stable structures. This approach is described in six steps and compared to widely used methods, which were tested and simulated in CupCarbon simulation environment with different metrics, and shows that the proposed solution is better than similar solutions in terms of a reduction of energy consumption from 11 to 70%, fault tolerance in the transferring of messages from 10 to 80%, and a reduction of cost from 93 to 97%. Manuscript profile