• Home
  • Lyapunov Stability
    • List of Articles Lyapunov Stability

      • Open Access Article

        1 - Stability Analysis of Networked Control Systems under Denial of Service Attacks using Switching System Theory
        Mohammad SayadHaghighi Faezeh Farivar
        With the development of computer networks, packet-based data transmission has found its way to Cyber-Physical Systems (CPS) and especially, networked control systems (NCS). NCSs are distributed industrial processes in which sensors and actuators exchange information bet More
        With the development of computer networks, packet-based data transmission has found its way to Cyber-Physical Systems (CPS) and especially, networked control systems (NCS). NCSs are distributed industrial processes in which sensors and actuators exchange information between the physical plant and the controller via a network. Any loss of data or packet in the network links affects the performance of the physical system and its stability. This loss could be due to natural congestions in network or a result of intentional Denial of Service (DoS) attacks. In this paper, we analytically study the stability of NCSs with the possibility of data loss in the feed-forward link by modelling the system as a switching one. When data are lost (or replaced with a jammed or bogus invalid signal/packet) in the forward link, the physical system will not receive the control input sent from the controller. In this study, NCS is regarded as a stochastic switching system by using a two-position Markov jump model. In State 1, the control signal/packet passes through and gets to the system, while in State 2, the signal or packet is lost. We analyze the stability of system in State 2 by considering the situation as an open-loop control scenario with zero input. The proposed stochastic switching system is studied in both continuous and discrete-time spaces to see under what conditions it satisfies Lyapunov stability. The stability conditions are obtained according to random dwell times of the system in each state. Finally, the model is simulated on a DC motor as the plant. The results confirm the correctness of the obtained stability conditions. Manuscript profile
      • Open Access Article

        2 - Stabilizing and Synchronizing the Islanded Microgrid with the Presence of Sensor and Actuator Fault and Cyber-Attack with Secondary Controller Design
        Abdollah Mirzabeigi Ali Kazemy Mehdi Ramezani Seyed Mohammad  Azimi
        In many microgrid control methods, the output information of sensors and actuators of neighbouring distributed generators (DGs) is used to stabilize and synchronize voltage and frequency. Many problems such as disturbances, uncertainty, unmodeled dynamics, cyber-attacks More
        In many microgrid control methods, the output information of sensors and actuators of neighbouring distributed generators (DGs) is used to stabilize and synchronize voltage and frequency. Many problems such as disturbances, uncertainty, unmodeled dynamics, cyber-attacks, noise, time delay, and measurement errors cause invalid data problems and errors in the system. Better microgrid control depends on the quality of data measured or sent from the output of sensors and actuators. In this paper, according to the advantages of the Cooperative distributed hierarchical control, it is used for control and synchronization in the islanded microgrid with the presence of sensor and actuator error. To synchronize DGs with multi-agent systems and communication channels, it is modeled with graph theory. To stabilize and synchronize, sensor and actuator error in the DG model is mathematically formulated. In the proof of stability and synchronization, the appropriate Lyapunov candidate is presented and the conditions of stability and synchronization are proved. Finally, to show the effectiveness of the designed controller in solving communication channel problems and verifying the presented theory, a case study is simulated in the MATLAB/Simulink software environment with the presence of error and cyber-attack of sensors and actuators. Manuscript profile