• Home
  • Asmari formation
    • List of Articles Asmari formation

      • Open Access Article

        1 - Diagenesis, microfacies and determination of original carbonate mineralogy of the Asmari Formation in the southern flank of Rig anticline
         Kakemem hamid mirmohammadsadeghi
        The aim of this study is to recognize diagenetic processes, microfacies and geochemical evidence for original carbonate mineralogy of Oligocene- Miocene Asmari limestone deposited in the Rig anticline at Rig mountain oil field. In this area, the Asmari Formation with a More
        The aim of this study is to recognize diagenetic processes, microfacies and geochemical evidence for original carbonate mineralogy of Oligocene- Miocene Asmari limestone deposited in the Rig anticline at Rig mountain oil field. In this area, the Asmari Formation with a thickness of 364 m have been exposed as a sequence of thin, medium, thick, and massive carbonate rocks. Twelve microfacies types have been distinguished on the basis of depositional textures, petrographic analysis and fauna. These carbonate microfacies belong to four major sub-environments including tidal flat, lagoon, bar/ shoal, and open marine. Absence of turbidite deposits, reefal belt and gradual changes in facies indicated that the Asmari Formation was deposited in a homoclinal carbonate ramp environment. The main diagenetic processes includes: dolomitization, cementation, micritization, dissolution, and compaction. Petrographic evidence and variation of major and minor element and compare this information with modern aragonite warm water and calcitic cool to cold temperate carbonate and originally aragonite mineralogy of Ordovician sub-tropical carbonate, the calcite mineralogy of Permian sub-polar cold water of Tasmania, the Upper Jurassic aragonite Mozduran limestone, the Ilam carbonate formation, and the Fahliyan Formation indicate that original carbonate mineralogy was aragonite in the Asmari Formation. High Sr/Na ratio suggests original aragonite mineralogy. Variation of Sr and Na values versus Mn confirm replacement of aragonite by calcite during the two stages of diagenetic stabilization. The bivariate plot of Sr/Ca versus Mn shows that Asmari limestone have been influenced by meteoric diagenesis in a closed to semi-closed diagenetic system. Manuscript profile
      • Open Access Article

        2 - Rock typing in Asmari Formation using hydraulic flow unit concept, with an impact on Ahvaz Sandstone Member in Mansouri Oilfield
        مسلم  خداویسی  Kavianpour-Sangenoo  Namdarian Seyed Reza Moussavi-Harami  Mahbobi  Kadkhodaei Davood Fereidooni
        The Asmari Formation (Oligocene-Miocene) is one of the most importance reservoir rocks in the Zagros Basin. This formation in the Mansouri Oilfield is composed of the mixture of silisiclastic - carbonate deposits which silisiclastic deposits are known as the Ahwaz Sands More
        The Asmari Formation (Oligocene-Miocene) is one of the most importance reservoir rocks in the Zagros Basin. This formation in the Mansouri Oilfield is composed of the mixture of silisiclastic - carbonate deposits which silisiclastic deposits are known as the Ahwaz Sandstone Member. Rock typing is a process in which geological facies determined with their dynamic behavior. Each flow unit is related to flow zone indicator, thus zoning of a reservoir using of flow zone indicators and identification of Flow units can be used to evaluate the reservoir quality based on relationship between porosity and permeability. To evaluate the reservoir quality and determining spatial distribution of petro-physical indexes in the Asmari Formation Sandstone, porosity-permeability relationship as well as their relationship with the rock types is used and finally Flow Units and Rock Types have been identified. In this study, the Asmari Formation Sandstone is divided into four flow units A, B, C and D. Within recognized flow units, flow unit C is the best one in the terms of reservoir quality and flow unit D also has a good reservoir quality. Comparison of determined flow units with porosity logs (neutron, density and sonic), it is observed that sandstone successions of Asmari reservoir affected by diagenetic processes like fracturing, dissolution, dolomitic cementation and hydrocarbon migration before cementation and flow units C and D are more extended, so porosity logs show good reservoir quality in this interval of Asmari succession. Thus it can be deduced that using hydraulic flow units, we can determine rock types groups in wells with core and then extrapolate the results into uncored wells. Manuscript profile
      • Open Access Article

        3 - Factors controlling different types of anhydrite textures and their relation to reservoir quality in the Asmari reservoir in Ahvaz oil field
        نسترن  آزادبخت
        Various diagenetic processes have affected reservoir quality of the Asmari Formation in Ahvaz Oil Field in wells No. 19 with a thickness of 357 meters. It is composed of limestone dolomite, dolomitic limestone, sandy dolomitic limestone, sandstone, siltstone and sha More
        Various diagenetic processes have affected reservoir quality of the Asmari Formation in Ahvaz Oil Field in wells No. 19 with a thickness of 357 meters. It is composed of limestone dolomite, dolomitic limestone, sandy dolomitic limestone, sandstone, siltstone and shale. Study of 1100 thin sections from available cores at this well as well as the well’s numeral data, porosity and permeability of cores, indicates that the most important diagenetic processes is anhydritic cement with different types of textures. It appears as poikilotopic, porefilling and pervasive, nodular, fracture filling, sparce crystals, and evaporite veins. During different steps of diagenesis, these texture show replacement and pore filling porosity that have affected different facies to some degrees. Results of this study show that anhydrite cement occurs mainly in dolomitic and sandstone facies and to some extent, affected the reservoir quality. This is due to the effect of sulphate rich brines during dolomitization. Where the presence of anhydrite cements in limestone facies is sparse and rare, it has little effect on reservoir quality. However, pore filling and pervasive anhydrite texture filling all pore-space in dolograinstone and dolopackstone grain-supported facies during shallow burial intensively reduced reservoir quality. Dissolution of cements at later stage of diagenetic processes (creating secondary porosity) improved reservoir quality. In addition, solution of texture poikilotopic anhydrite in sandstone facies and repercipitated as patchy anhydrite with poikilotopic texture, results in reduction of porosity but it doesn’t make any changes in throat pores. Hence patchy anhydrite with poikilotopic texture that reduces porosity converts the sample from Lucias class 2 to class 1. Manuscript profile
      • Open Access Article

        4 - Microfacies and palaeoecology of the Asmari Formation in southeast flank of the Khami anticline (east of Gachsaran) and Correlation with two other sections of the Asmari Formation in the Zagros Basin
        همتا رنجبر علی رحمانی
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification More
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification 12 microfacies (nummulitidae lepidocyclina packestone/rodestone, corallinacea benthic foraminifera (perforate) packstone, bioclast neorotalia packestone, ooid grainstone, bioclast grainstone, miliolid neorotalia nummulitidae packestone, miliolid corallinacea coral floatstone/grainstone, bioclast benthic foraminifera (imperforate) packstone/grainstone, miliolid packstone/grainstone, sandy mudstone, intraclast mudstone) that deposited in continental slope, shoal, lagoon and tidal flat. In three different salinity facies environment from 34 psu to over 50 psu in oligoophotic to euphotic environment and oligotrophy-weak mesotrophy to eutrophy conditions in a homoclinal carbonate ramp platform recognized for the Asmari Formation at this study area. Correlation of the Asmari Formation in 3 section, A water salinity environmental correlation of the Asmari Formaion from Firozabad to east and north of Gachsaran reveals that 1- during Rupelian the Asmari Formation deposited in a normal water salinity environment, 2- while normal salinity water condition prevailed in Gachsaran area during Chattian, the Fars area was under higher marine salinity environment. Higher salinity environment developed during Aquitanian and Burdigalian in Gachsaran area. Manuscript profile
      • Open Access Article

        5 - Oligocene microfacies and sedimentary environment of the Asmari Formation at northwest of Deris village, west of Fars province: correlation with three other sections in Zagros Basin
        samir Akhzari Ali Seyrafian
        In this disquisition, Oligocene (Rupelian-Chattian) microfacies and sedimentary environment of the Asmari Formation at the northwest of Deris village, located in interior Fars zone of the Zagros Basin have been interpreted. The coordinates of such section are N: 29o 4 More
        In this disquisition, Oligocene (Rupelian-Chattian) microfacies and sedimentary environment of the Asmari Formation at the northwest of Deris village, located in interior Fars zone of the Zagros Basin have been interpreted. The coordinates of such section are N: 29o 41' 59'', E: 51 o 32' 26''. The Asmari Formation deposits in this section are divided into 5 lithological units and consist of 460 m thin, medium, thick and massive bedded, gray and cream to gray limestone, slightly dolomitic with nodular and marly interbedded. By study of hyaline benthic foraminifera genera and non-foraminifera, and also recognition of some properties such as skeletal ingredient associations and sedimentary textures of thin sections, 14 microfacies have been introduced for the Asmari Formation. Gradual perpendicular changes of these microfacies represent that settling the Asmari Formation deposits took place in a homoclinal rapm. This homoclinal ramp consists of middle ramp and inner ramp, that are separated by shoal environment. Middle ramp is recognized by presence and dominition hyaline benthic foraminifera, coralline red algae and echinoids. The most significant skeletal debris of inner ramp are porcelainous foraminifera. To compare the thickness, age and sedimentary environment, zonal correlation of the Asmari Formation done in Deris section with three other sections (Naura anticline, Dill anticline and Dehloran) in the Zagros Basin. This correlation represent that the age of the Asmari Formation gets younger to the deeper parts of the foreland basin of the Zagros. Manuscript profile
      • Open Access Article

        6 - Biostratigraphy, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no. 4 of Lab-e Safid oil field (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht)
        Selahedin Arab pour Ali Seyrafian Ali Rahmani
        In this research biostratigraphy, microfacies, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no.4 of Lab-e Safid (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht) has been studied. The tota More
        In this research biostratigraphy, microfacies, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no.4 of Lab-e Safid (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht) has been studied. The total thickness of the Asmari Formation is 360 m and 260 m in the Lab-e Safid and Tang- e Lendeh sections, respectively and composed of thick, medium and thin bedded limestone. The correlation of recognized biozones in the studied regions with other regions in Zagros (Bangestan Anticline: tang-e Band, tang-e Nayab and Tang-e Bulfares, Parsi oil field, Kuh-Asmari and Khaviz Anticline: Tang-e Bibinarjes) indicates that Asmari Formatin in Tang-e Bibinarjes, Tang-e Band and, well no.4 of Lab-e Safid has deposited earlier than other regions. Four different sub environments were identified in the Asmari Formation based on microfacies analysis including tidal flat, lagoon, shoal, open marine. These depositional environments correspond to inner, middle and outer ramp. On the basis of deepening and shallowing patterns in the microfacies five and two third-order sequences have been recognized in the Lab-e Safid and Tang- e Lendeh sections, respectively. In order to study the changes of depositional environment of the Asmari Formation during the Oligocene-Miocene, the recognized sequences in this study have been correlated with those recognized in other parts of the Zagros basin. Manuscript profile
      • Open Access Article

        7 - Isotopic and Geochemical comparison of Bangestan and Asmari Oils to determine origination
        ashkan Zardashti Morteza Tabaei mahmood memariani
        In order to analyze the geochemical characteristics, the oil samples of the Asmari reservoirs and the Bangistan group in the Kopal field were studied using various geochemical techniques such as asphalting technique, gas chromatography technique, gas chromatography-mass More
        In order to analyze the geochemical characteristics, the oil samples of the Asmari reservoirs and the Bangistan group in the Kopal field were studied using various geochemical techniques such as asphalting technique, gas chromatography technique, gas chromatography-mass spectrometry technique and carbon isotope measurement technique, were subjected to analysis. the purpose of This research is a comparison of carbon isotope and geochemical properties of Asmara and Bangestan oils in Kopal field to determine their parent rock and origin. Considering the results of the testing technique and analysis of biomakers of the esteranes and terpanes family extracted from saturated cutting, it can be stated that the oils accumulated in the Asmari and Bangestan reservoirs of the Kopal field have the characteristics of oil. are paraffinic, which indicates the existence of light oil with good quality, mature, low viscosity and high sulfur. By placing the ratio of biomarker parameters against carbon 13 isotope and examining the general results of the graphs, it was found that the oil samples of Asmari reservoirs and Bangestan reservoirs in the studied field are from a common generative rock. have been found and have the same characteristics and only slightly differ in maturity, degree of fluidity, and the amount of migration processes between the source rock and the reservoir rock, and similarly, the transformation course of the source rock organic materials has occurred naturally in the Copal field. The values of carbon isotopes in the oils indicate the average maturity of the rocks producing the oils. The graph of the ratio of the aromatic carbon 13 isotope against the saturated carbon 13 isotope showed that both field oil samples The subject of study belongs to marine environments. Manuscript profile
      • Open Access Article

        8 - The history of deposition and post-deposition and their effects on the reservoir quality of Asmari Formation in Ahvaz oilfield
        Akbar Heidari Milad Faraji Narges Shokri
        The carbonate interval of the Asmari formation along with sandstone deposits were deposited in most areas of the Zagros sedimentary Basin, including the Ahvaz area, in Oligo-Miocene. In this study, the effects of depositional and post-depositional environments on the re More
        The carbonate interval of the Asmari formation along with sandstone deposits were deposited in most areas of the Zagros sedimentary Basin, including the Ahvaz area, in Oligo-Miocene. In this study, the effects of depositional and post-depositional environments on the reservoir quality of zone A7 of the Asmari Formation in well No. 4 in Ahvaz oil field were studied. The study of the sequences of the Asmari Formation in this section led to the identification of 11 carbonate facies, one evaporite facies, one mixed carbonate-siliciclastic facies, and one siliciclastic facies. Sedimentary environments of tidal zone, lagoon, coral reef and open sea were introduced for the depositional environment of identified facies. Due to the absence of sudden changes, it seems that the studied deposits were deposited in a ramp-type carbonate platform that was influenced by siliciclastic sediments from the Zagros river systems. The immature sedimentary texture of the sandstone facies indicates the proximity of the origin of the quartz sources to the carbonate basin. Among the diagenetic processes that have affected the examined sequences, the following processes can be mentioned: micritization, cementation, neomorphism, physical and chemical compaction, dissolution, fracture development and filling, dolomitization, and anhydritization. These diagenetic processes occurred in post-depositional marine, meteoric and burial diagenetic environments. Many fractures were filled with petroleum, which indicates that fractures, along with dolomitization, chemical compaction, and fenestral pores, are among the most important post-sedimentation complications to increase reservoir quality. While cementation and anhydritization resulted in reducing the reservoir quality by closing the pore spaces . Manuscript profile
      • Open Access Article

        9 - Reservoir quality evaluation of the Asmari Formation in the framework of sequence stratigraphy in one of the Iranian SW oilfield
        Ebrahim Sfidari A. Hakymi-Zanuz
        The Oligo-Miocene Asmari Formation forms the main reservoir rock of many Dezful Embayment fields. Microfacies analysis, diagenetic features, and sequence stratigraphic evaluation of the Asmari Formation were carried out based on the petrographic investigation, petrophys More
        The Oligo-Miocene Asmari Formation forms the main reservoir rock of many Dezful Embayment fields. Microfacies analysis, diagenetic features, and sequence stratigraphic evaluation of the Asmari Formation were carried out based on the petrographic investigation, petrophysical logs, and core measurement porosity and permeability data. Petrographic analyses led to the identification of twelve microfacies indicating five subenvironments including tidal flat, lagoon, barrier (belonging to inner ramp), middle ramp, and outer ramp, all of which are representing a homoclinal ramp. Tidal flat, lagoonal, and barrier microfacies are mostly present in the upper parts of the Asmari Formation, while middle and outer ramp microfacies were largely developed in the middle part. Cementation, compaction, dolomitization, dissolution, and fracturing are the main diagenetic processes in this formation. Compaction and cementation have negatively affected reservoir quality while fracturing, dolomitization, and dissolution contributed to reservoir quality enhancement. The sequence stratigraphic studies represent three 3rd order sequences of early Aquitanian, late Aquitanian, and early Burdigalian age based on the main features of microfaces, their depositional environments, and shallowing and deepening-upward trends. Microfacies of the Transgressive System Tract (TST) have been affected by compaction, dissolution (moldic), cementation, and slightly dolomitization in the middle to outer ramp parts. The Highstand System Tract in the inner ramp part has been affected by dolomitization, dissolution, and fracturing close to the sequence boundaries, and has a better reservoir quality than the Transgressive System Tract. Manuscript profile