• Home
  • پلاسمونی
    • List of Articles پلاسمونی

      • Open Access Article

        1 - Improving the directivity of the plasmonic sectoral horn nanoantenna using lens in its aperture
        Masumeh  Sharifi Najmeh  Nozhat Ehsan  Zareian-Jahromi
        Horn antennas can result in good impedance matching between the waveguide and free space due to the gradual increase in the aperture size. In this paper, a novel plasmonic sectoral horn nanoantenna based on using lens in the aperture is proposed. It is investigated that More
        Horn antennas can result in good impedance matching between the waveguide and free space due to the gradual increase in the aperture size. In this paper, a novel plasmonic sectoral horn nanoantenna based on using lens in the aperture is proposed. It is investigated that in addition to improvement of the directivity, the reflection coefficient is also reduced using the proper lens structure. The maximum directivity improvement is about 2 dBi compared to the structure without lens. Also, it is shown that the radiation pattern can be controlled by utilizing electro-optical material as the lens Manuscript profile
      • Open Access Article

        2 - Temperature Sensor Based on Terahertz Plasmonic Slot Waveguide Coupled with a Resonator
        Alireza Dolatabady
        In this paper, the performance of a temperature sensor based on plasmonic structure including a slot waveguide coupled with a stub resonator has been investigated. The results have been attained based on the dependency of dispersion equation, and so, the resonance frequ More
        In this paper, the performance of a temperature sensor based on plasmonic structure including a slot waveguide coupled with a stub resonator has been investigated. The results have been attained based on the dependency of dispersion equation, and so, the resonance frequency of the stub, to electric permittivity of the constructing material of the structure, InSb, which is also dependent to the ambient temperature. The design of the structure has been carried out for frequencies in terahertz spectra. The simulation results confirm an approximate linear relation between the resonance frequencies and ambient temperature, between 260-350 Kelvin. Also, a criterion has been assigned for evaluation the sensitivity and the performance temperature span of the proposed sensor. The calculated sensitivity is about 1×10-10 Kelvin per Hertz in the mentioned temperature interval. The sensor measurement resolution depends on the frequency resolution of the detection system. This simple sensor can be utilized in various chemical and bio systems. Manuscript profile