• Home
  • پردازش‌های ترکیبی دسته‌ای و جریانی
    • List of Articles پردازش‌های ترکیبی دسته‌ای و جریانی

      • Open Access Article

        1 - Improving IoT Botnet Anomaly Detection Based on Dynamic Feature Selection and Hybrid Processing
        Boshra Pishgoo Ahmad akbari azirani
        The complexity of real-world applications, especially in the field of the Internet of Things, has brought with it a variety of security risks. IoT Botnets are known as a type of complex security attacks that can be detected using machine learning tools. Detection of the More
        The complexity of real-world applications, especially in the field of the Internet of Things, has brought with it a variety of security risks. IoT Botnets are known as a type of complex security attacks that can be detected using machine learning tools. Detection of these attacks, on the one hand, requires the discovery of their behavior patterns using batch processing with high accuracy, and on the other hand, must be operated in real time and adaptive like stream processing. This highlights the importance of using batch/stream hybrid processing techniques for botnet detection. Among the important challenges of these processes, we can mention the selection of appropriate features to build basic models and also the intelligent selection of basic models to combine and present the final result. In this paper, we present a solution based on a combination of stream and batch learning methods with the aim of botnet anomaly detection. This approach uses a dynamic feature selection method that is based on a genetic algorithm and is fully compatible with the nature of hybrid processing. The experimental results in a data set consisting of two known types of botnets indicate that on the one hand, the proposed approach increases the speed of hybrid processing and reduces the detection time of the botnets by reducing the number of features and removing inappropriate features, and on the other hand, increases accuracy by selecting appropriate models for combination. Manuscript profile