• Home
  • مقیاس‌پذیر
    • List of Articles مقیاس‌پذیر

      • Open Access Article

        1 - Proposing a Robust Method Against Adversarial Attacks Using Scalable Gaussian Process and Voting
        Mehran Safayani Pooyan Shalbafan Seyed Hashem Ahmadi Mahdieh Falah aliabadi Abdolreza Mirzaei
        In recent years, the issue of vulnerability of machine learning-based models has been raised, which shows that learning models do not have high robustness in the face of vulnerabilities. One of the most well-known defects, or in other words attacks, is the injection of More
        In recent years, the issue of vulnerability of machine learning-based models has been raised, which shows that learning models do not have high robustness in the face of vulnerabilities. One of the most well-known defects, or in other words attacks, is the injection of adversarial examples into the model, in which case, neural networks, especially deep neural networks, are the most vulnerable. Adversarial examples are generated by adding a little purposeful noise to the original examples so that from the human user's point of view there is no noticeable change in the data, but machine learning models make mistakes in categorizing the data. One of the most successful methods for modeling data uncertainty is Gaussian processes, which have not received much attention in the field of adversarial examples. One reason for this could be the high computational volume of these methods, which limits their used in the real issues. In this paper, a scalable Gaussian process model based on random features has been used. This model, in addition to having the capabilities of Gaussian processes for proper modeling of data uncertainty, is also a desirable model in terms of computational cost. A voting-based process is then presented to deal with adversarial examples. Also, a method called automatic relevant determination is proposed to weight the important points of the images and apply them to the kernel function of the Gaussian process. In the results section, it is shown that the proposed model has a very good performance against fast gradient sign attack compared to competing methods. Manuscript profile
      • Open Access Article

        2 - Construction of Scalable Decision Tree Based on Fast Data Partitioning and Pre-Pruning
        سميه لطفي Mohammad Ghasemzadeh Mehran Mohsenzadeh Mitra Mirzarezaee
        Classification is one of the most important tasks in data mining and machine learning; and the decision tree, as one of the most widely used classification algorithms, has the advantage of simplicity and the ability to interpret results more easily. But when dealing wit More
        Classification is one of the most important tasks in data mining and machine learning; and the decision tree, as one of the most widely used classification algorithms, has the advantage of simplicity and the ability to interpret results more easily. But when dealing with huge amounts of data, the obtained decision tree would grow in size and complexity, and therefore require excessive running time. Almost all of the tree-construction algorithms need to store all or part of the training data set; but those algorithms which do not face memory shortages because of selecting a subset of data, can save the extra time for data selection. In order to select the best feature to create a branch in the tree, a lot of calculations are required. In this paper we presents an incremental scalable approach based on fast partitioning and pruning; The proposed algorithm builds the decision tree via using the entire training data set but it doesn't require to store the whole data in the main memory. The pre-pruning method has also been used to reduce the complexity of the tree. The experimental results on the UCI data set show that the proposed algorithm, in addition to preserving the competitive accuracy and construction time, could conquer the mentioned disadvantages of former methods. Manuscript profile