• Home
  • حمله سایبری
    • List of Articles حمله سایبری

      • Open Access Article

        1 - Detection and Mitigation of a Combined Cyber Attack on Automatic Generation Control
        Tina Hajiabdollah H. Seifi Hamed Delkhosh
        Recent advances in power system monitoring and control require communication infrastructure to send and receive measurement data and control commands. These cyber-physical interactions, despite increasing efficiency and reliability, have exposed power systems to cyber a More
        Recent advances in power system monitoring and control require communication infrastructure to send and receive measurement data and control commands. These cyber-physical interactions, despite increasing efficiency and reliability, have exposed power systems to cyber attacks. The Automatic Generation Control (AGC) is one of the most important control systems in the power system, which requires communication infrastructure and has been highly regarded by cyber attackers. Since a successful attack on the AGC, not only has a direct impact on the system frequency, but can also affect the stability and economic performance of the power system. Therefore, understanding the impact of cyber attacks on AGC and developing strategies to defend against them have necessity and research importance. In most of the research in the field of attack-defense of AGC, the limitations of AGC in modeling such as governor dead band and communication network transmission delay have been ignored. On the other hand, considering two cyber attacks on the AGC and proposing a way to defend against them simultaneously, have not been considered. In this paper, while using the improved AGC model including governor dead band and communication network transmission delay, the effect of two attacks - data injection attack (FDI) and delay attack which are the most important cyber attacks on AGC - has been investigated. Also, the simultaneous effect of these two attacks is discussed as a combined cyber attack. The Kalman filter-based three-step defense method has been proposed to detect, estimate and mitigate the impact of the attacks and its effectiveness has been tested on the two-area AGC system. Manuscript profile
      • Open Access Article

        2 - Robust Planning of False Data Injection Attack on Electricity Markets in Smart Grids
        Hamed Badrsimaei R. Hooshmand Soghra  Nobakhtian
        False data injection attack (FDIA) is a destructive cyber threat to the economic performance of electricity markets in smart grids. A cyber attacker can make a huge financial profit by implementing an FDIA through penetrating the virtual transactions of the electricity More
        False data injection attack (FDIA) is a destructive cyber threat to the economic performance of electricity markets in smart grids. A cyber attacker can make a huge financial profit by implementing an FDIA through penetrating the virtual transactions of the electricity markets and manipulating electricity prices. In this paper, a new approach to planning an absolutely stealthily FDIA is presented with the aim of achieving maximum financial profit from the perspective of a cyber attacker participating in virtual transactions from two markets of day-ahead (DA) and real-time (RT). A common hypothesis in studies of FDIAs against electricity markets is that the attacker has complete information about the smart grid. But the fact is that the attacker has limited resources and can hardly access all the network information. This paper proposes a robust approach in designing an attack strategy under incomplete network information conditions. In particular, it is assumed that the attacker has uncertainties about the network modeling matrices. The validity of the proposed method is evaluated based on the IEEE 14-bus standard system using the Matpower tool. Numerical results confirm the relative success of the proposed attack in cases of varying degrees of incomplete information. Manuscript profile
      • Open Access Article

        3 - Design of a Secondary Controller Based on Distributed Cooperative Control of Distributed Generators (DGs) with Multi-Agent Systems Approach Considering DoS Cyber Attacks
        Abdollah Mirzabeigi Ali Kazemy Mehdi Ramezani Seyed Mohammad Azimi
        Today, in many control methods, neighboring system information is used for better control and synchronization between different units, and therefore, in the access and transmission of information through communication links, problems such as disruption, uncertainty, noi More
        Today, in many control methods, neighboring system information is used for better control and synchronization between different units, and therefore, in the access and transmission of information through communication links, problems such as disruption, uncertainty, noise, delay, and cyber-attacks occur. In this paper, the effect of the Denial of Service (DoS) cyber-attack on the microgrid in island mode is investigated and a cooperative distributed hierarchical controller is designed with the presence of this cyber-attack. Distributed Generations (DGs) have been analyzed with the help of multi-agent systems and the communication network between them using graph theory. The effects of the DoS cyber-attack on the model of DGs are mathematically formulated and in proving the stability and synchronization of frequency and voltage, the suitable Lyapunov function is presented and the stability analysis of DGs against these cyber-attacks is performed and the stability and synchronization conditions of DGs are proved. To confirm the proposed theoretical issues, a case study model is simulated despite the DoS attack on the communicative links in Matlab Simulink, and the results show the performance of the designed controller in different conditions. Manuscript profile
      • Open Access Article

        4 - Stabilizing and Synchronizing the Islanded Microgrid with the Presence of Sensor and Actuator Fault and Cyber-Attack with Secondary Controller Design
        Abdollah Mirzabeigi Ali Kazemy Mehdi Ramezani Seyed Mohammad  Azimi
        In many microgrid control methods, the output information of sensors and actuators of neighbouring distributed generators (DGs) is used to stabilize and synchronize voltage and frequency. Many problems such as disturbances, uncertainty, unmodeled dynamics, cyber-attacks More
        In many microgrid control methods, the output information of sensors and actuators of neighbouring distributed generators (DGs) is used to stabilize and synchronize voltage and frequency. Many problems such as disturbances, uncertainty, unmodeled dynamics, cyber-attacks, noise, time delay, and measurement errors cause invalid data problems and errors in the system. Better microgrid control depends on the quality of data measured or sent from the output of sensors and actuators. In this paper, according to the advantages of the Cooperative distributed hierarchical control, it is used for control and synchronization in the islanded microgrid with the presence of sensor and actuator error. To synchronize DGs with multi-agent systems and communication channels, it is modeled with graph theory. To stabilize and synchronize, sensor and actuator error in the DG model is mathematically formulated. In the proof of stability and synchronization, the appropriate Lyapunov candidate is presented and the conditions of stability and synchronization are proved. Finally, to show the effectiveness of the designed controller in solving communication channel problems and verifying the presented theory, a case study is simulated in the MATLAB/Simulink software environment with the presence of error and cyber-attack of sensors and actuators. Manuscript profile