Formation of calamine in Ahmadabad Zn (Pb) Non-sulfide deposit (Northeast of Bafq)
Subject Areas :Sara Amani Lari 1 , Iraj Rassa 2 , Ali Amiri 3
1 -
2 -
3 -
Keywords: Calamine# Zn and Pb nonsulfides# Ahmadabad deposit# Bafgh#,
Abstract :
Ahmadabad calamine deposit is located in Posht-e Badam block, 80 km of northeast of Bafgh. The dolomitic unit of Shotori Formation is Middle Triassic age and is ore deposit host rock. Primary non-sulfide mineralization belongs to the Upper Triassic to Jurassic and includes galena, sphalerite and pyrite since being affected by subsequent tectonic phases- are crushed, uplifted, weathered and oxidized and produced non-sulfide minerals. Calamine, Cerussite, wulfenite, iron oxide and hydroxide are the most abundant non-sulfide minerals in the region. Mineralogical and field observations revealed that calamine is formed in two ways, i.e. direct replacement and wall- rock replacement. Direct replacement calamine is formed at the site of primary sulfide mineralization and has more mineralogical variability compared with the wall-rock replacement type. Mineralogical characteristics of the minerals revealed, metal-rich solutions perform non-sulfur mineralization in the unsaturated zone, within the porous host rock and the type of mineral is affected by changes in carbon dioxide pressure and ambient pH. The average values of the oxygen stable isotope data of hydrozincite is 25.5‰; therefore, the average temperature for the formation of this mineral is 29 ºC. Chemical analysis showed that the direct replacement calamine has more lead and the other type has more zinc, and due to the high concentration of arsenic and cadmium in the mineral composition of the area, more attention should be paid to the environmental issues.
امانی لاری، س.، 1395. کانی¬شناسی و ژنز کانسار روی- سرب (مولیبدن) احمدآباد (شمال¬شرق بافق). رساله دکتری، دانشگاه آزاد اسلامی واحد تهران شمال، 286.
آقانباتی، س.ع.، 1389. زمین¬شناسی ایران. سازمان زمین¬شناسی و اکتشافات معدنی، چاپ سوم، 586.
امیری، ع.، 1386، مطالعه ویژگی¬های زمین¬شناسی، ژئوشیمیایی و ژنز کانسارهای روی و سرب با سنگ میزبان کربناته در ناحیه راور- بافق- پایان¬نامه دکتری-دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 315.
امیری، ع. و رسا، ا.، 1385. بررسی ویژگی¬های زمین¬شناسی کانسارهای استراتاباند غیرسولفیدی روی و سرب در ناحیه کوهبنان-بهاباد. فصلنامه زمین¬شناسی کاربردی، دانشگاه آزاد اسلامی واحد زاهدان، 1، 1-9.
بیات، ا.، خادمی، ح.، و کریم¬زاده ح.ر.، 1392. دماسنجی و بازسازی تغییرات اقلیمی گذشته با استفاده از شواهد پالئوپدولوژیک در بخش شرقی حوضه زایندهرود اصفهان. پژوهش¬های اقلیم¬شناسی،13 و 14.
جوانشیر، ع.، 1386. کانی¬شناسی، ژئوشیمی، آنالیز رخساره و ژنز کانی¬سازی روی-سرب (مولیبدن) در دولومیت¬های سازند شتری در کانسار احمدآباد (شمال¬شرق بافق).پایان¬نامه کارشناسی ارشد، دانشگاه تربیت ¬مدرس، 208.
قربانی، م.، 1381. دیباچه¬ای از زمین¬شناسی اقتصادی ایران. پایگاه ملی داده¬های علوم زمین کشور، گزارش 2.
Ahn, H. I., 2010. Mineralogyand Geochemistry of the non-sufide Zn Deposits in the Sierra Mojada district, Coahailo, Mexico. Published thesis, University of Texas at Austin, 179p.
Barling, J. and Anbar, A.D., 2002. Mo Scavenging by manganese oxyhydroxides and the seawater Mo isotope record in oxic sediments. Geeochim Cosmochim Acta 66 Spec Suppl A 52.
Bladh, K.W., 1982. The formation of goethite, jarosite, and alunite during the weathering of sulfide-bearing felsic rocks. Economic Geology, 77, 176-184.
Borchardt, G., 1989. Smectites: in Dixon, J.B. and Weed, S.B., eds.,Minerals in Soil Enviroments: Soil Science Society of American Journal Special Publication, 1, 675-727.
Reichert, J. and Borg, G., 2008. Numerical simulation and geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geology Reviews, 33, 134-151.
Boni, M., 2003.Stable isotope studies on Zn and Pb carbonates: their role in mineral exploration of non-sulphide deposits. Proceedings, SEG Conference, Perth WA, September 2004, 361-365.
Boni, M., Gilg, H.A., Aversa, G. and Balassone, G., 2003. The “Caldamine” of SW Sardinia (Italy): geology, mineralogy nd stable isotope geochemistry of the a supergene Zn-mineralization: Economic Geology, 98, 731-748.
Boni, M., 2005.The Geology and Mineralogy ofnonsulfideZinc Deposits.LEAD and ZINC ’05, Kyoto, Japan, 17-19 October 2005, proceedings, 1299-1314.
Boni, M. and Mondillo, N., 2015. The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores, Ore Geology Reviews, 67,208-233.
Boyle, D.R., 1994. Oxidation of massivesulfide deposits in the Bathurst mining camp, New Brunswick:Natural analogues for acid drainage in temperate climates: in Alpers, C.N.and Blowes,D.W., eds., Environmental geochemistry of sulfide oxidation: American ChemicalSociety Symposium Series 550, 535-550.
Dachroth, W. and Sonntage, C., 1983. Grundwassemeubildung und Isotoppendatierung in Sudwestafrika/ Nambia.Zeitschrift der DeutschenGeologischen Gesellschaft.134, 1023-104.
De Vivo, B., Maiorani, A., Perna, G. and Turi, B., 1987. Fluid inclusion and stable isotope studies on calcite, quartz and barite from karstic caves in the Masua mine, southwestern Sardinia, Italy. Chemmie der Erde, 46, 259-273.
Dove, P. M. and Rimstidt, J.D., 1994. Silica-water interactions. In: Heaney, P.J., Prewitt, C.T. and Gibbs, G. V. (Eds), Silica, Physical Behavior, Geochemistry and Materials Applications. Reviews in Mineralogy, 29,259-308.
Gabriel, J., Bowen and Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipition. WATER RE SOURCES RESEARCH 39, No.1299.
Gilg, H. A., Boni, M., Hochleitner, R. and Struck, U., 2008. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits: Ore Geology Revews, 33, 117-133.
Herbert, R.B., 1999. Sulphide oxidation in mine waste deposits, a review with emphasis on dysoxic weathering. Mitigation of the environmental impact from mining waste (MiMi).MiMi Print, Lulea, Sweden.
Herczeg,A.L., Dogramaci, S. S. and Leaney, F.W., 2001. Origin of dissolved salts in a large, semi-arid ground water system: Murray Basin, Australia. Marine and Freshwater Resources, 52, 41-52.
Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R. and Carman, C.E., 2003. Classification, genesis, and exploration guides for nonsulfide Zinc deposits. Economic Geology, 98, 685-714.
IAEA, 2004.Isotope Hydroloy Information System. The ISOHIS Database. Accessible at: http:/isohis.iaea.org
Ingweraen, G., 1990. Die sakundaren Mineralbildungen der Pb-Zn-Cu- Lagerstatte.Tsumeb, Namibia. Unpublished PhD. Thesis, University Stuttgart, Germany. Markham, N.L., 1960, Thewillemite-hemimorphite relationship. Economic Geology, 55, 844-847.
Large, D., 2001. The geology of non-sulfide zinc deposits - an overview. Erzmetall, 54, 264-276.
Markham, N.L., 1960. The willemite-hemimorphite relationship: Economic Geology,. 55,. 844-847.
McPhail, D. C., Summerhayes, E., Welch, S. and Brugger, J., 2003. The Geochemistry of Zinc in the Regolith. In: Roach, I. C. (Ed.), Advances in Regolith. CRC for Landscape Environments and Mineral Exploration, 287-291.
Melchiorre, E.B., Williams, P.A. and Bevins, R.E., 2001. A low temperature oxygen isotope thermometer for cerussite, with application at Broken Hill, New South Wales, Austrailia. Geochimica et Cosmochimica Acta, 65, 2527- 2533
Mondillo, N., 2014. SupergenNonsulfide Zinc-Lead Deposits: The Examples ogJaballi (Yaman) and Yanque (Peru), Doctoral Thesis in Economic Geology, University Digital Studi di Napoel “FEDRICII”, School in Earth Science, 185p.
Mason, B. and Moore, C.B., 1982. Principles of geochemistry. Forth edition, John Wiley and Sons, 344.
Muchez, P., Nielsen, P., Sintubin, M. and Lagrou, D., 1998. Conditions of meteoric calcite formation along a Variscan fault and their possible relation to evolation during the Jurassic-Cretaceous. Sedimentology 45, 845-854.
Paradis, S., Simandl,G. J., Keevil, S. H. and Raudsepp, M., 2016. Carbonate-Hosted Nonsulfide Pb-Zn Deposits of the Quesnel Lake District, British Columbia, Canada, 10.2113/econgeo.111.1.179.
Rajabi, A., Rastad, E. and Canet, C., 2013. Metallogeny of Permian-Triassic carbonate-hosted Zn-Pb and F deposits of Iran: Areview for future mineral exploration. Australian Geoscience Journal. 60, 197-216.
Reichert, J. and Borg, G., 2008. Numerical simulation and geochemical model of supergene carbonate-hosted non-sulphide zinc deposits:Ore Geology Reviews, 33, 134-151.
Reichert, J., 2008. A geochemical model of supergene carbonate-hosted nonsulfide zinc deposit: in Titley, S.R., ed., Supergene Enviroments, Processes, and Products, Societty of Economic Geologists Special Publication Number 14, 69-76.
Robinson, B.W., 1974. The origin of mineralization at Tui mie,Te Aroha, New Zealand, in the light of stable isotope studies. Economic Geology, 69, 910-925.
Sangeshwar, S.R., Barnes, H. L. 1983. Supergen processes in zinc-lead-silver sulfides ores incarbonates. Economic Geology 78, 1379-1397.
Takahashi, T., 1960. Supergen alteration of zinc and lead deposits in limestone. EconomicGeology, 55, 1083-1115.
Whinely, D. and Evans, B., 2010, Abbreviations for names of rock-forming minerals. American Mineralogist, 95.185-187.
Yans, J., 2003. Chronologie des sediments kaoliniques a facies wealdien (Barremien moyen et Albien superieur, Bassin de Mons) et de la saprolite polyphasee (Cretace inferieur et Miocene inferieur) de la Haute-Lesse (Belgique). Implications geodynamiques et paleoclimatiques. Doctoral Thesis, Faculte Polytechnique de Mons, Belgium, 316p.