Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
Subject Areas :
1 -
Keywords: Geochemistry, Original calcite mineralogy, Qom Formation, Madabad, Zanjan.,
Abstract :
The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran.
آدابی، م.ح.، 1390. ژئوشیمی رسوبی، انتشارات آرین زمین، چاپ دوم، 503.
- آقانباتی، س.ع.، 1383. زمینشناسی ایران. انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، تهران، 586.
- پورمحمدی، س.، 1392. سکانس استراتیگرافی و بیوفاسیس سازند قم در برش دهشیر بالا (جنوبغرب زنجان). پایاننامه کارشناسی ارشد، دانشگاه ارومیه، 291.
- ربانی، ج. و زهدی، ا.، 1396. تحلیل شرایط پالئواکولوژی کلنیهای مرجانی ریفساز میوسن پیشین در شمالباختر زنجان. چهارمین همایش منطقهای تغییر اقلیم و گرمایش زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، 5.
- حسینینژاد، س.م.، رامه، ح. و اهریپور، ر.، 1395. زیستچینهنگاری و محیط رسوبی سازند قم در برش تلنکوه (جنوبباختری سمنان). رسوبشناسی کاربردی، 7، 101-116.
- شهیدی، ع. و بهار فیروزی، خ.، 1380. نقشه زمینشناسی حلب، مقیاس 1:100،000. سازمان زمینشناسی و اکتشافات معدنی کشور.
- عالیپور، ش.، میرزایی عطاآبادی، م.، زهدی، ا. و رحمانی، ع.، 1395. چینهشناسی و ریزرخسارههای سازند قم در منطقه قمچقای، جنوب زنجان. یازدهمین همایش انجمن دیرینهشناسی ایران، 17-18 اسفند 1395، دانشگاه پیام نور طبس، 190.
- علوی نائینی، م.، 1372. نقشه زمینشناسی خدابنده- سلطانیه، مقیاس 1:100،000. سازمان زمینشناسی و اکتشافات معدنی کشور.
- کاکمم، ا.، آدابی، م.ح. و صادقی، ع.، 1393. دیاژنز میکروفاسیس و تعیین کانیشناسی اولیه کربناتهای سازند آسماری در برش کوه ریگ، فصلنامه زمینشناسی ایران، 31، 91-106.
- کریمی مصدق، ز،. آدابی، م.ح. و صادقی، ع.، 1389. ژئوشیمی سازند آسماری در مقاطع سطحالارضی تنگ سپو و تنگ بن در ناحیه استان کهگیلویه و بویراحد، فصلنامه علوم زمین، 76، 23- 32.
- محمدیان اصفهانی، م.، صفری، ا. و وزیری مقدم، ح.، 1392. بررسی ریزرخسارهها و محیط رسوبی سازند قم در ناحیه بیجگان (شمالشرق دلیجان). رخسارههای رسوبی، 6، 65-76.
- نوری، م.، 1397. زمینشناسی، ژئوشیمی و خاستگاه کانسار سلستین مادآباد، باختر قیدار. پایاننامه کارشناسی ارشد زمینشناسی اقتصادی، دانشگاه زنجان. 112.
- Adabi, M.H. and Asadi Mehmandosti, E., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33, 267-277.
- Adabi, M.H. and Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology, 72, 253-267.
- Adabi, M.H., Kakemem, U. and Sadeghi, A., 2016. Sedimentary facies, depositional environment, and sequence stratigraphy of Oligocene-Miocene shallow water carbonate from the Rig Mountain, Zagros basin (SW Iran). Carbonates and Evaporites, 31, 69-85.
- Adabi, M.H., Salehi, M.A. and Ghabeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, 39, 148-160.
- Brand, U. and Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II, stable isotopes. Journal of Sedimentary Petrology, 51, 987-997.
- Brand, U., Azmy, K. and Veizer, J., 2006. Evaluation of the salinic I tectonic, Cancaniri glacial and Ireviken biotic events: Biochemostratigraphy of the Lower Silurian succession in the Niagara Gorge area, Canada and U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 192-213.
- Budd, D., 2002. The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: A case study from the Paleogene of west-central Florida. Journal of Sedimentary Research, 72, 116-128.
- Daneshian, J. and Ramezani-Dana, L., 2007. Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran. Journal of Asian Earth Sciences, 29, 844-858.
- Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36, 491-505.
- Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1, 108-121.
- Flügel, E., 2010. Microfacies of carbonate rocks, analysis interpretation and application. Springer-Verlag, Berlin, Heidelberg, 976.
- Furrer, M.A. and Soder, P.A., 1955. The Oligo-Miocene Formation in the Qom region (Iran). Proceeding. 4th World Petroleum Congress, 6-15 June, Roma, Italy, 267-277.
- Harzhauser, M. and Piller, W.E., 2007. Benchmark data of a changing sea - Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 8-31.
- Heydari, E., Arzani, N. and Hassanzadeh, J., 2008. Mantle plume: The invisible serial killer -Application to the Permian-Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264, 147-162.
- Honarmand, J. and Amini, A., 2012. Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran. Journal of Petroleum Science and Engineering, 81, 70-79.
- Jafarian, A., Javanbakht, M, Koeshidayatullah, A, Pimentel, N., Salad Hersi, O., Yahyaei, A. and Beigi, M., 2017. Paleoenvironmental, diagenetic, and eustatic controls on the Permo-Triassic carbonate-evaporite reservoir quality, Upper Dalan and Kangan formations, Lavan Gas Field, Zagros Basin. Geological Journal, 53, 1442-1457.
- Karami-Movahed, F., Aleali, M. and Ghazanfari, P., 2016. Facies analysis, depositional environment and diagenetic features of the Qom Formation in the Saran Semnan, Central Iran. Open Journal of Geology, 6, 349- 362.
- Khatibi Mehr, M. and Adabi, M.H., 2014. Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to Middle Eocene, Alborz basin, Iran. Carbonates and Evaporites, 13, 127-148.
- Milliman, J., 1974. Marine Carbonates Recent Sedimentary Carbonates, Part 1. Springer-Verlag, New York, 375.
- Mohammadi, E., Safari, A., Vaziri Moghaddam, H., Vaziri, M.R., and Ghaedi, M., 2011. Microfacies analysis and paleoenvironmental interpretation of the Qom Formation, south of the Kashan, Central Iran. Carbonates and Evaporites, 26, 255-271.
- Okhravi, R. and Amini, A., 1998. An example of mixed carbonate-pyroclastic sedimentation (Miocene, Central Basin, Iran). Sedimentary Geology, 118, 37-54.
- Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6, 83-106.
- Rao, C.P., 1996. Modern Carbonates Tropical Temperate Polar. Introduction to Sedimentology and Geochemistry. Howrah, Tasmania, 206.
- Rao, C.P. and Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103, 249- 272.
- Rao, C.P. and Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf. Carbonates, western Tasmania, Australia. Carbonates and Evaporites, 10, 114-123.
- Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, M.P., Wielandt-Schuster, U. and Hamedani, A., 2009. The Oligo-Miocene Qom Formation (Iran): Evidence for an Early Burdigalian restriction of Tethyan Seaway and closure of its Iranian gateways. International Journal of Earth Sciences, 98, 627-650.
- Schuster, F. and Wielandt, U., 1999. Oligocene and early Miocene coral faunas from Iran: paleoecology and paleobiogeography. International Journal of Earth Sciences, 88, 571-581.
- Vaziri-Moghaddam, H. and Torabi, H., 2004. Biofacies and sequance strayigraphy of the Oligocene succession, Central basin, Iran. Neues Jahrbuch für Geologie und Paläontologie, 6, 321-344.
- Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates, Reviews in Mineralogy and Geochemistry, 11, 265-299.
- Veizer, J. and Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the western Carpathians. Journal of Sedimentary Petrology, 43,1, 258-271.
- Winefeld, P.R., Nelson C.S. and Hodder, A.P.W, 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11, 19-31.