Assessment of the activity in the gap zone of the Rudbar Fault, based on the morphotectonic indices of the Sefidrud River, Gilan Province
Subject Areas :
1 -
Keywords: Western Alborz Sefidrud river Rudbar fault Morphotectonics Fault gap ,
Abstract :
In this study the morphotectonic indices for a specified length of the Sefidrud River, which is located in the meizoseismal area of the 1990 Rudbar earthquake, have been investigated to constrain the activity of a gap between the Rudbar Fault segments. The Digital Elevation Model (DEM) with 30 m resolution was used to obtain the elevation data. Fifteen km of the Sefidrud River also was divided into 100 -meter segments to calculate the morphotectonic indices. The morphotectonic indices include the sinuosity (SI), stream-length gradient (SL) and river long profile. The sinuosity in this region, where the trend of the Rudbar fault cut across the river, is approximately 1-1.5 and has a lower value relative to the other segments of the river. This indicates that the uplift possibly affected this region and then indicates the high tectonic activity. The stream-length gradient in the target region is approximately >3000 and has a higher value in the region which may be related to the lithological and active tectonic effects. The high value of SL can be used for determining the regions with high potential for the landslides along the strike of the Sefidrud River. The Sefidrud long profile, in aforementioned area, has a bulge or convexity. Such convexity together with the high value of stream-length gradient can indicate that the tectonic activities are significant in this region. By comparing the morphotectonic analysis with the seismotectonic studies such as the Coulomb stress changes due to the 1990 Rudbar earthquake, in which the high stress zones were detected in this region, it can be cluded that the studied region has high tectonic activities and consequently its monitoring to prevent the seismic hazard is essential.
انصاری، ش.، 1393. تغییرات تنش کولمب زمینلرزه 1990 رودبار. رساله دکترا. دانشگاه شیراز. 163 .
جعفر بی گلو، م.، زمانزاده، م.، یمانی، م. و عمادالدین، س.، 1391. شواهد ژئومورفولوژیک تغییرات سطح اساس دریای خزر طی کواترنر پسـین در محدودة رودخانة گرگانرود. مجله پژوهشهای جغرافیای طبیعی، 44، 50-33.
فرهنگ جغرافيايي رودهاي كشور.، 1382. جلد دوم، انتشارات سازمان جغرافيايي وزارت دفاع و پشتياني نيروهاي مسلح.
ندیم، ه.، 1393. نقشه زمینشناسی 000¬1:25¬ رودبار. انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور.
Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25, 659–672.
Allen, M.B., Blanc, E.J., Walker, R., Jackson J., Talebian, M. and Ghassemi, MR., 2006. Contrasting styles of convergence in the Arabia-Eurasia collision: Why escape tectonics does not occur in Iran. Special Publication, Geological Society of America, 409, 579-589.
Allen, M.B., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, 1-16.
Berberian, M., 1997. Seismic sources of the Transcaucasian historical earthquakes. In: Giardini, D., Balassanian, S. (Eds.), Historical and Prehistorical Earthquakes in the Caucasus, NATO ASI Series, vol. 2. Kluwer Academic Press, The Netherlands. Environment, 28, 233–311.
Berberian, M., Qorashi, M., Jackson, JA., Priestley, K. and Wallace, T., 1992. The Rudbar-Tarom earthquake of June 20, 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82, 1726-1755.
Berberian, M. and Walker, R., 2010. The Rudbar Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High- Alborz’, Iran. Geophysical Journal International, 182, 1577-1602.
Bridge, J.S., 2005. Rivers and Floodplains-Forms, Processes, and Sedimentary Record. Oxford, UK: Blackwell Pub.
Burbank, D.W. and Anderson, R.S., 2000. Tectonic Geomorphology. Blackwell, Malden, 288.
El Hamdouni, R., Irigaray, C., Fernandez, T., Chacon, J. and Keller, E., 2008. Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology, 96 (1-2), 150-173.
El Hamdouni, R., Irigaray, C., Jiménez-Perálvarez, J.D. and Chacón, J., 2010. Correlations analysis between landslides and stream length-gradient (SL) index in the southern slopesof Sierra Nevada (Granada, Spain). Taylor and Francis Group, London, 141–149.
Hack, J.T., 1973. Stream-profile analysis and stream-gradient index. United States Geological Survey Journal Research, 1, 421–429.
Holbrook, J. and Schumm, S.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epirogenicdeformation in modern and ancient settings. Tectonophysics, 305, 287–306.
Jackson, J., Priestley, K., Allen, M. and Berberian, M., 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International, 148, 214–245.
Jorgensen, D.W., 1990. Adjustment of Alluvial River Morphology and Process to Localized Active Tectonics. Ph.D. thesis. Colorado State University, Fort Collins, CO, USA.
Keller, E.A. and Pinter, N., 1996. Active Tectonics. Prentice Hall, Upper Saddle River, N.J.: Prentice Hall.
Ouchi, S., 1985. Response of alluvial rivers to slow active tectonic movement. Geological Society of American Bulletin, 96, 504-515.
Pedrera, A., Pérez-Peña, J.V., Galindo-Zaldivar, J., Azañón, J. M. and Azor, A., 2009. Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology, 105(3-4), 218-231.
Petrovszki, J. and G., Timar. 2010. Channel sinuosity of the Körös River system, Hungary/Romania, as possible indicator of the neotectonic activity. Geomorphology, 122, 223–230.
Radjaee, A., Rham, D., Mokhtari, M., Tatar, M., Priestley, K. and Hatzfeld, D., 2010. Variation of Moho depth in the central part of the Alborz Mountains, northern Iran. Geophysical Journal International, 181,173-184.
Timar, G., 2003. Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Science Reviews, 22, 2199–2207.
Troiani, F. and Della Seta, M., 2008. The use of the stream length-gradient indexin morphotectonic analysis of small catchments: a case study from central Italy.Geomorphology, 102, 159–168.
Troiani, F., Galve, J., Piacintini, D., Della Seta, M. and Guerrero, J., 2014. Spatial analysis of stream length-gradient (SL) index for detecting hillslope processes: A case of the Gállego River headwaters (Central Pyrenees, Spain). Geomorphology, 214, 183–197.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tvakoli, F. and Ch´ery, J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International. 157, 381–398.
Zamolyi, A., Székely, B. Draganits, E. and Timár, G., 2010. Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology, 122, 231–243.