Geochemistry of pegmatitic and vein tourmalines and their formation mechanism in the Mashhad leucogranites
Subject Areas :Farhad Zal 1 , Zahra Tahmasbi 2 , Ahmadi Noubari 3
1 -
2 -
3 -
Keywords: Tourmaline Binalud Zone Schorl Leucogranite Mashhad.,
Abstract :
The studied area is located in the Binalud Zone and comprises Mashhad leucogranites (g2) that include pegmatites and tourmaline veins. According to studies of the Mashhad leucogranites, these granites are peraluminous, highly differentiated and resulted from melting metapelites. In these granites, tourmaline can be seen in various forms of dendritic, nodules, vein and pegmatitic forms. For geochemical studies of vein and pegmatitic tourmalines, it was used microprobe analysis (EPMA), XRF and ICP- MS. Based on these analyses, pegmatitic tourmalines include schorl and vein tourmalines which are magnesium-rich- schorl and both are classified in the range of alkaline tourmalines. They have oscillatory chemical zoning and bluish green to brown pleochroism that is probably due to changes in concentration of Ti, Ca, and Fe. In the studied tourmalines, major substitutions took place including Na+(Fe+Mg)= X-Vacancy+Al and Na+(Fe+Mg)OH=Na+Al(O). Both types of tourmalines are resulted from magma differentiation with this difference that pegmatitic tourmalines show magmatic system characteristics but vein tourmalines have magmatic-hydrothermal system characteristics. These properties are related to the pegmatitic development stages and fluids obtained during their evolution.
- زال، ف.، 1393. ژئوشیمی و تعیین منشا تورمالین در گرانیتهاي (g2) مشهد. پایاننامه کارشناسی ارشد، دانشکده علوم، دانشگاه لرستان، 110.
- صمدی، ر.، میرنژاد، ح.، شیردشت زاده، ن. و کاواباتا، ه.، 1391. کاربرد شیمی گارنت در بررسی ترمودینامیک تونالیت ده نو (شمال غرب مشهد)، ايران. مجله بلورشناسي و کانیشناسی ايران، 20 (2)، 453- 264.
- طهماسبی، ز.، زال، ف. و احمدی خلجی، ا.، a1394. ریختشناسی تورمالين در گرانیتهای مشهد ( g2) با استفاده از آناليز فراکتال و تئوری اجتماع با انتشار محدود (DLA). مجله بلورشناسي و کانیشناسی ايران، 23(3)، 417- 428.
- طهماسبی، ز.، زال، ف. و احمدی خلجی، ا.، b1394. ژئوشیمی و سازوكار تشکيل تورمالين گرهكي در گرانیتهای (g2) مشهد. مجله بلورشناسي و کانیشناسی ايران، 23(3)، 569- 584.
- کريم پور، م.ح.، فارمر، ل. و استرن، چ.، 1390. ژئوشيمي راديو ایزوتوپها Rb–Sr و Sm–Nd، سن سنجي زيرکن U-Pb و تعيين منشأ ليکوگرانيت هاي خواجه مراد، مشهد، ايران. فصلنامه علوم زمین، سازمان زمینشناسی و اکتشاف معدنی کشور، 20(80)، 171-182.
میرنژاد، ح.، 1370. پترولوژي گرانیتها و پگماتیت هاي جنوب مشهد. پایاننامه کارشناسی ارشد، پرديس علوم، دانشگاه تهران، 259.
ولي زاده، م.و. و كريم پور، م.ح.، 1374. منشا و موقعيت تكتونيكي گرانیتهای جنوب مشهد، مجله علوم، دانشگاه تهران، 21(1)، 71-82.
- Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G. and Scandale, E., 2006. Mn-tourmaline crystals from island of Elba (Italy): growth history and growth marks. American Mineralogist, 91, 944-952.
- Alberti, A. and Moazez, Z., 1974. Plutonic and metamorphic rocks of the Mashhad area (northeastern Iran, Khorasan). Bolleton Society Geological Italy, 93, 1157-1196.
- Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219–230.
- Beaty, D.W., Hahn, G.A. and Threlkeld, W.E., 1988. Field, isotopic, and chemical studies of tourmaline-bearing rocks in the Belt-Purcell Supergroup: genetic constraints and exploration significance for Sullivan type ore deposits. The Canadian Mineralogist Earth Sciences, 25, 392-402.
- Bernard, F., Moutou, P. and Pichavant, M., 1985. Phase rela¬tions of tourmaline leucogranites and the significance of tourmaline in silicic magmas. Journal of Geology, 93, 271-291.
- Boynton, W.V., 1984. Geochemistry of the rare earth elements meteorite studies. In: Henderson, P. (ed) Rare Earth Element Geochemistry, Elsevier, Amsterdam, 63–114.
- Buriánek, D. and Novák, M., 2007. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: examples from the Bohemian Massif, Czech Republic. Lithos, 95, 148–164.
- Deer, W.A., Howie, R.A. and Zussman, J., 1996. An Introduction to the Rock-Forming Minerals. Pearson Prentice Hall, Harlow.
- Dini, A., Corretti, A., Innocenti, F., Rocchi, S. and Westerman, D.S., 2007. Sooty sweat stains or tourmaline spots? The Argonauts at Elba Island (Tuscany) and the spread of Greek trading in the Mediterranean Sea. In Piccardi, L., Masse, W. B. (eds) Myth and Geology. Geological Society, London, Special Publications, 273, 227–243.
- Dutrow, B.L. and Henry, D.J., 2000. Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids. The Canadian Mineralogist, 38, 131-143.
- Faye, G.H., Manning, P.G., Gosselin, J.R. and Tremblay, R.G., 1974. The optical absortion spectra of tourmaline: importance of charge- transfer processes. The Canadian Mineralogist, 12, 370-380.
- Flynn, R.T. and Burnhamn, C.W., 1978. An experimental determination of rare earth partition coefficients between chloride containing vapor phase and silicate melts. Geochimica et Cosmochimica Acta, 42, 685-701.
- Foit, F.F. and Rosenberg, P.E., 1977. Coupled substitutions in the tourmaline group. Contributions to Mineralogy and Petrology, 62, 109-117.
- Gallagher, V., 1988. Coupled substitutions in schorl–dravite tourmaline; new evidence from SE Ireland. Mineralogical Magazine, 52, 637-650.
- Grew, E.S., 2002. Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environ¬ments. In Boron: Mineralogy, Petrology and Geochemistry, 2nd printing (E.S. Grew & L.M. Anovitz, eds.). Review Mineralogy, 33, 387-502.
- Hawthorne, F.C. and Henry, D.J., 1999. Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201-215.
- Henry, D.J. and Dutrow, B.L., 1992. Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contribution to Mineralogy and Petrology, 112, 203-218.
- Henry, D.J. and Dutrow, B.L., 1996. Metamorphic tourmaline and its petrologic applications. In: Grew Es, Anovitz LM (eds) Boron. Mineralogy, Petrology and Geochemistry, The Mineralogical Society of America, Washington, DC, Reviw, Mineralogy, 33, 503-557.
- Henry, D.J, Dutrow, B.L. and Selverstone, J., 2002. Compositional asymmetry in replacement tourmaline – an example from the Tauern Window, Earstern Alps. Geological Materials Research, 4(2), 1-18.
- Henry, D. J. and Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite grade metapelites of NW-Marine. American Mineralogist, 70, 1-15.
- Hezel, D.C., Kalt, A., Marschall, H.R., Ludwig, T. and Meyer, H.P., 2011. major-element and Li, be compositional evolution of tourmaline in an s-type granite–pegmatite system and its country rocks: an example from ikaria, aegean sea, Greece. The Canadian Mineralogist, 49, 321-340.
- Jiang, S.Y., Palmer, M.R., Li, Y.H. and Xue, C.J., 1995. Chemical compositions of tourmaline in the Yindongzi-Tongmugou Pb-Zn deposits, Qinling, China: Implications for hydrothermal ore-forming processes. Mineralium Deposita, 30, 225-234.
- Jiang, S.Y., Radvanec, M., Nakamura, E., Palmer, M., Kobayashi, K., Zhao, H.X. and Zhao, K.D., 2008. Chemical and boron isotopic variations of tour¬maline in the Hnilec granite-related hydrothermal system, Slovakia: constraints on magmatic and metamorphic fluid evolution. Lithos, 106, 1-11.
- Kubiš, M. and Broska, I., 2010. The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. Journal of Geosciences, 55, 131 – 148.
- London, D., Babb, H.A., Morgan, G.B. and Lommis, J.L., 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-H2O at 2000 MPa (H2O). Contributions to Mineralogy and Petrology, 113, 450- 460.
- London, D. and Maning, D.A.C., 1995. Chemical variation and significance of tourmaline from SW England. Economic Geology, 90, 495-519.
- London, D., Morgan, G.B. and Wolf, M.B., 1996. Boron in granitic rocks and their contact aureoles. In Boron: Min¬eralogy, Petrology and Geochemistry (E.S. Grew & L.M. Anovitz, eds.). Reviews in Mineralogy, 33, 299-330.
- Mirnejad, H., Lalonde, A.E., Obeid, M. and Hasanzadeh, J., 2013. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos, 170, 105-116.
- Neiva, A.M.R., Gomes, M.E.P., Ramos, J.M.F. and Silva, P.B., 2008. Geochemistry of granitic aplite pegmatite sills and their minerals from Arcozelo da Serra area (Gouveia, central Portugal). European Journal of Mineralogy, 20, 465–485.
- Nemec, D., 1975. Genesis of tourmaline spots in leucocratic granites. Neues Jahrbuch Mineralogic Monatshefte, 7, 308-317.
- Ortoleva, P., Merino, E., Chadam, J. and Moore, C., 1987. Geochemical self-oreganization I: Reaction- transport Feed backs and modeling approach. American journal of science, 287, 979-1007.
- Samson, I.M. and Sinclair, W.D., 1992. Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicles in the Seagull Batholith, Yukon Territory. Canadian Mineralogist, 30, 937–954.
- Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C., 1999. Compositional evolution of tourmaline in lepid¬olite-subtype pegmatites. European Journal of Mineralogy, 11, 569-584.
- Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C., 2000a. The Tanco pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. Canadian Mineralogist, 38, 869-976.
- Selway, J.B., Černý, P., Hawthorne, F.C. and Novák, M., 2000b. The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. Canadian Mineralogist, 38, 877-891.
- Selway, J.B., Smeds, S.A., Černý, P. and Hawthorne, F.C., 2002. Compositional evolution of tourmaline in the petalite-subtype Nyköpingsgruvan pegmatites, Utö, Stock¬holm Archipelago, Sweden. Geologiska föreningen , 124, 93-102.
- Smith, M.P. and Yardley, B.W.D., 1996. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England Orefield: an ion microprobe study. Geochimica et Cosmochimica Acta, 60, 1415-1427.
- Taheri, J. and Ghaemi, F., 1994. Geological sheet map of Mashhad, 1:100000 scale, Geological Survey of Iran, Tehran.
- Tindle, A.G., Breaks, F.W. and Selway, J.B., 2002. Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753-788.
- Thompson, A.B., 1982. Magmatism of the Bristish Tertiary volcanic Province. Scottish Journal of Geology, 18, 50–107.
- Vincent, J. and Hinsberg, V., 2011. Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. The Canadian Mineralogist, 49, 153-163.
- VonGoerne, G., Franz, G. and Heinrich, W., 2001. Synthesis of tourmaline solid solutions in the system Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl and the distribution of Na between tourmaline and fluid at 300 to 700°C and 200 MPa. Contributions to Mineralogy and Petrology, 141, 160-173.
- Werding, G. and Schreyer, W., 2002. Experimental studies on borosilicates and selected borates. In Boron: Mineralogy, Petrology and Geochemistry, 2nd printing (E. S. Grew & L. M. Anovitz, eds.). Review Mineralogy, 33, 117-163.
- Wolf, M.B. and London, D., 1997. Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology, 130, 12-30.