Typology Analysis of Various Windows and Smart Glasses for Optimal Energy Consumption in an Office Building in a Cold Climate
Subject Areas :Mahrokh Gholizadeh 1 , Mohammadmehdi Moulaii 2 , Morteza Maleki 3
1 - M.A. Student, Faculty of Art and Architecture, Bu-Ali Sina University, Hamedan, Iran.
2 - Architecture, Faculty of Art and Architecture, Bu-ali Sina University, Hamedan, Iran
3 - Architecture, Faculty of Art and Architecture, Boali Sina University, Hamedan, Iran
Keywords: Keywords: Energy conservation, Cold climate, Openings, Window glazing, Office space.,
Abstract :
Energy consumption has rapidly increased over the past few decades. After the energy crisis of the 1970s and the subsequent rise in crude oil and energy prices, the focus on energy conservation has expanded. All buildings, including office buildings, contribute significantly to a substantial portion of global energy consumption, making energy performance a fundamental criterion in early-stage decision-making. Heat transfer and energy loss through openings and windows are critical concerns in all climates, particularly in cold climates, where they represent some of the weakest points of the building envelope in terms of thermal loss. Since appropriately designed openings are an effective strategy for maintaining energy inside the building, this study (a brief report) explores various window configurations that can reduce energy loss in buildings. This research examines different types of openings based on their geometry, the number of glazing layers (such as single, double, and triple glazing), the type of glass used (including reflective, energy-controlling, and smart glasses), different window frame profiles, and the insulating gases used between panes. The study aims to optimize window designs based on the number of glazing layers and their orientation in an office building located in a cold climate. In conclusion, the most efficient window type for cold climates is identified, considering the significance of solar radiation in such regions.
1- زاجکانی، اصغر؛ و جوادی، امیرحسین(1394). مروری بر پنجرههای هوشمند. کنفرانس و نمایشگاه بینالمللی رویکردهای نوین در نگهداشت انرژی https://sid.ir/paper/830224/fa
2- شاعری، جلیل؛ وکیلی نژاد، رزا؛ و یعقوبی، محمود(2020). تأثیر نوع گازهای میانی پنجرههای دو و سه جداره بر بار سرمایش و گرمایش ساختمانهای اداری در اقلیم گرم و مرطوب، گرم و خشک و سرد ایران. معماری و شهرسازی ایران (JIAU)، 10(2)، 211-225. doi:10.30475/isau.2020.103683
3- مولایی، محمدمهدی؛ پیلهچیها، پیمان؛ و شادانفر، عطیه(2019). بهینهسازی تناسبات بازشو و جبهه نورگیری با رویکرد کاهش مصرف انرژی در ساختمانهای اداری. نقشجهان، 26(9)، 118-123. dor:20.1001.1.23224991.1398.9.2.6.7
4- نمازیان، علی؛ و سپهری، یحیی(2015). نقش شیشه (پنجره) در رفتار حرارتی ساختمان. مسکن و محیط روستا، 34(152)، 85-100.
5- Bitaab, M., Hosseini Abardeh, R., & Movahhed, S. (2019). Experimental and numerical study of energy loss through double-glazed windows. Heat and Mass Transfer, 56(3), 727-747.
6- Pasternack, A., Bhend, J., Liniger, M. A., Rust, H. W., Müller, W. A., & Ulbrich, U. (2018). Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geoscientific Model Development, 11(1), 351-368.
doi:10.5194/gmd-11-351-2018
7- Arıcı, M., Karabay, H., & Kan, M. (2015). Flow and heat transfer in double, triple and quadruple pane windows. Energy and Buildings, 86, 394-402. doi:10.1016/j.enbuild.2014.10.043
8- Ekici, B. B., & Aksoy, U. T. (2008). Investigation of the effects of orientation and windows usage on external walls in terms of heating and cooling energy. Turkish Journal of Engineering and Environmental Sciences, 32(1), 23-33.
9- Sol, C., Schläfer, J., Parkin, I. P., & Papakonstantinou, I. (2018). Mitigation of hysteresis due to a pseudo-photochromic effect in thermochromic smart window coatings. Scientific reports, 8(1), 13249.
doi:10.1038/s41598-018-31519-x
10- Bagheri, F., Mokarizadeh, V., & Jabbar, M. (2013). Developing energy performance label for office buildings in Iran. Energy and Buildings, 61, 116-124. doi:10.1016/j.enbuild.2013.02.022
11- Kokogiannakis, G., Darkwa, J., & Aloisio, C. (2014). Simulating thermochromic and heat mirror glazing systems in hot and cold climates. Energy Procedia, 62, 22-31. doi:10.1016/j.egypro.2014.12.363
12- Krarti, M. (2022). Energy performance of control strategies for smart glazed windows applied to office buildings. Journal of Building Engineering, 45, 103462. doi:10.1016/j.jobe.2021.103462
13- Laura Bellia, I. A. (2020). Impact of daylight saving time on lighting energy consumption and on the biological clock for occupants in office buildings . elsevier, 1347-1364.
14- Bellia, L., Acosta, I., Campano, M. Á., & Fragliasso, F. (2020). Impact of daylight saving time on lighting energy consumption and on the biological clock for occupants in office buildings. Solar Energy, 211, 1347-1364.
doi:10.1016/j.solener.2020.10.072
15- Rastegari, M., Pournaseri, S., & Sanaieian, H. (2021). Daylight optimization through architectural aspects in an office building atrium in Tehran. Journal of Building Engineering, 33, 101718.
doi:10.1016/j.jobe.2020.101718
16- Mingxin Feng, X. B. (2020). Review: smart windows based on photonic crystals. Springer Science+Business Media.
17- MoncefKrarti. (2021). Design optimization of smart glazing optical properties for office spaces. elsevier, 118411.
18- Nathan Van Den Bossche, L. B. (2015). Thermal optimization of window frames . 6th International Building Physics Conference, 1876-6102 .
19- Neil L.Sbar, L. M. (2012). Electrochromic dynamic windows for office buildings. International Journal of Sustainable Built Environment, 125-139.
20- P. Gohari. (2019). The influence of building material, windows and insulators on energy saving in different climate zones in Iran. International Journal of Energy and Water Resources, 42108-019-00044-6.
doi:10.1007/s42108-019-00044-6