Geology, mineralogy, geochemistry and genesis of the Kuh-Mil copper (gold) deposit, Northeast Saveh, Markazi province
Subject Areas :Mohammad Kazem Ghiasi zadeh 1 , Masoud Alipour-Asll 2 , S.M. Meshkani 3
1 -
2 -
3 -
Keywords: Intermediate-sulfidation epithermal, Cu (Au) deposit, Kuh-Mil, Saveh,
Abstract :
The Kuh-Mil copper (gold) deposit is located 25 km northeast Saveh and in the middle part of Urmia-Dokhtar magmatic arc. Volcanic and pyroclastic rocks such as andesite, trachyandesite, andesite basalt with Middle- Late Eocene age are outcropped in this area. The Late Eocene hypabyssal quartz monzodiorite to monzodiorite intrusive rocks have been injected into the volcanic rocks. The calc-alkaline igneous rocks are classified as I-type granitoids, and are related to the magmatic arcs in the active continental margin and collisional zones. Mineralization is mainly observed as vein- veinlets, breccia and rarely disseminated forms in intrusive and volcanic rocks. Primary ore minerals include chalcopyrite (main ore mineral), pyrite, specularite and hematite, and secondary types include chalcocite, covellite, malachite, goethite and limonite. Alteration zones are propylitic, argillic, phyllic (quartz, sericite ± pyrite), silicic, iron oxide, tourmalinization and carbonate alteration. In the altered rocks, SiO2, K2O, Rb, Zr, Nb, Ta, U, Th, and light rare earth elements (LREEs) are enriched, while the rest of the major oxides, Ba, Sr, Cs, and heavy REEs show depletion. In the Kuh-Mil mineralization system, Cu has a good positive geochemical correlation with Au, Ag, Bi, Cd, and As. The homogenization temperature and salinity of fluid inclusion in quartz vary from 115 ºC to 200 ºC (average 164 ºC) and from 2.68 to 24.67 (average 20.25) wt.% NaCl equivalent, respectively. Based on the homogenization temperature and salinity, the trapping pressure of fluid inclusions is estimated to be less than 10 bars, and depth of placement is less than 500 meters. The Kuh-Mil Cu (Au) mineralization system is classified in the category of intermediate- sulfidation epithermal deposits.
پرتاک، ن. و علیپوراصل، م.، 1398. کانهزایی طلای اپیترمال با سنگ میزبان کربناتی کاوند، جنوب غرب زنجان. فصلنامه زمینشناسی ایران، 13، 52، 63-88.
- حسنی قرهتکان، م.، 1398. زمین¬شناسی، کانی¬شناسی و الگوی ژئوشیمی و پیدایش کانسار مس-آهن کردخلج، شمال¬غرب ساوه. پایاننامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، 136.
- حسین زاده، م.ر.، مغفوری، س.، موید، م.، هادوی چهاربرج، ز. و عامل، ن.، 1402. زمینشناسی، ژئوشیمی و الگوی پراکندگی عناصر در زونهای دگرسانی نقدوز-زایلیک، زون ماگمایی ارسباران. فصلنامه زمینشناسی ایران، 17، 65، 71-90.
- حیدریان دهکردی، ن.، نیرومند، ش. و تاجالدین، ح.ع.، 1403. الگوی توزیع عناصر نادر خاکی در پهنههای دگرسان و کانهدار کانسار لخشک (پهنه زمین درز سیستان). فصلنامه زمینشناسی ایران، 18، 69، 35-47.
- رجب پور، ش.، 1395. کانیشناسی، دگرسانی و ژئوشیمی کانسار مس ولکانیکی کوه پنگ ساوه، بخش میانی پهنه فرورانش ارومیه-دختر. مجله پژوهشهای دانش زمین دانشگاه شهید بهشتی، 7، 1، 25، 109 - 128 .
- فضلی، ن.، قادری، م.، لنتز، د. و جیانوی، ل.، 1398. زمینشناسی، دگرسانی، کانهزایی و ژئوشیمی کانسار اپیترمال نقره- مس نارباغیشمالی،شمالخاور ساوه. فصلنامه علوم زمین، سازمان زمینشناسی و اکتشافات معدنی کشور، 28، 112، 13 -22.
- گروه معدنی زرمش، 1398. پیجوییهای زمینشناسی و اکتشافی در مقیاس 20000/1 در محدودهی اکتشافی کوه میل، شمالشرق ساوه، گزارش داخلی و منتشر نشده گروه معدنی زرمش.
- یوسفی، س.، 1396. کانی¬شناسی، دگرسانی، ژئوشیمی و الگوی تشکیل کانسار مس زرندیه، شمال شرق ساوه. پایاننامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، 144.
- Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.
- Beane, R.E., 1983. The Magmatic–Meteoric Transition. Geothermal Resources Council, Special Report 13, 245–253.
- Boynton, W.V., 1984. Geochemistry of rare earth elements: Meteorite studies. In: Henderson, P., Ed., rare earth element geochemistry, Elsevier, New York, 63-114.
- Driesner, T. and Heinrich, C.A., 2007. The system H2O-NaCl correlation formulae for Phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71, 4880-4901.
- Grant, J.A., 1986. The isocon diagram-a simple solution to Gresens’ Equation for metasomatic alteration. Economic Geology, 81, 1976-l 982.
- Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology, 66, 940-946.
- Haas J.L., 1976. Thermodynamic properties of the coexisting phases and thermodynamic properties of the NaCl component in boiling NaCl solutions. United State Geological Survey Bulletin, 1421-B. 71.
- Hedenquist, J.W., Arribas, J.A. and Gonzalez-Urein, E., 2000. Exploration for epithermal gold deposits. Society of Economic Geologists Review, 13, 245-277.
- Hedenquist, J.W., Sillitoe, R.H. and Arribas, A., 2004. Characteristics of and exploration for high-sulfidation epithermal Au-Cu deposits. In: Cooke, D. R., Deyell, C. L., Pongratz, J., (eds.), 24 Carat Gold Workshop: Centre for Ore Deposit Research, Special Publication, 5, 99-110.
- Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. In: P. Henderson (Editor), rare earth element geochemistry. Developments in Geochemistry, Elsevier, New York. 1-32.
- Hofmann A.W., Jochum, K.P., Seufert, M. and White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33–45.
- Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144, 38-56.
- Leitch, C.H.B. and Lentz, D.R., 1994. The Gresens approach to mass balance constraints of alteration systems: methods, pitfalls, examples. In: D.R. Lentz (Editor), Alteration and Alteration Processes Associated with ore-forming systems. Geological Association of Canada, Short Course Notes, 11, 161-192.
- Lentz, D.R. and Gregoire, C., 1995. Petrology and mass balance constraints on major, trace and rare earth element mobility in porphyry greisen alteration associated with the epizonal True Hill granite, southwestern New Brunswick, Canada. Journal of Geochemical Exploration, 52, 303-331.
- McDonough, W.F. and Sun, S.S., 1995. Composition of the earth. Chemical Geology, 120, 223-253.
- Middlemost, E.A.K., 1994. Naming materials in the magma and igneous rock system. Science Reviews, 37, 215-224.
- Pearce, A., Harris, N.B. and Tindle, A.G., 1984. Trace elements discrimination diagrams for the tectonic interpretation of granitic rock. Journal of Petrology, 25, 956-983.
- Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. In Trace element geochemistry of volcanic rocks: Applications for massive sulfide exploration. Geological Association of Canada Short Course Notes. 79–113.
- Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northen Turkey. Contibutions to Mineralogy and Petrology, 58, 63-81.
- Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Geological Survey of Western Australia, Perth, Australia, 1273.
- Rollinson, H.R., 1993. Using geochemical data, evaluation, presentation, interpretation. Longman Scientific and Technical, 352.
- Sillitoe, R.H. and Hedenquist, J.W., 2003. Linkages between volcanotectonic settings ore-fuid compositions, and epithermal precious metal deposits in volcanic, geothermal, and ore-forming fuids: rulers and witnesses of processes with the earth. Society of Economic Geologists, Special Publication. 10. 315-345.
- Simmons, S.F., White, N.C. and John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary. 485-522.
- Sourirajan, S. and Kennedy, G.C., 1962. The system H2O-NaCl at elevated temperatures and pressures. American Journal of Science, 260, 115-141.
- Wang, L., Qin, K.Z., Song, G.X. and Li, G.M., 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107, 434-456.
- Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
- Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.