Improvement payment loan concerning financial discipline and maximum gain in uncertainly
Roya Cheshmikhani
1
(
PhD student in Industrial Management, Islamic Azad University, Faculty of Science and Research, Tehran, Iran
)
Mohammadali Afsharkazemi
2
(
Associate Professor of Industrial Management, Islamic Azad University, Science and Research Unit, Tehran, Iran
)
Abbas Toloei Eshlaghy
3
(
Full Professor of Industrial Management, Islamic Azad University, Faculty of Science and Research, Tehran, Iran
)
Ezattollah Asgharizadeh
4
(
Associate Professor of Industrial Management, University of Tehran, Tehran, Iran
)
Keywords: Facilities, Data Mining, Clustering, Deep Learning, Convolutional Neural Network, CNN-LSTM. ,
Abstract :
Granting facilities is an important part of every bank's operations. This part of banking activities is economically important. With its operations, banks can provide the transfer of resources from those that have directly invested to those who need money, this repayment makes another people use these resources. Failure to repay facilities on time will cause the bank's resources to stagnate and in the long will cause the country's economic recession. It is important to monitor the correct allocation of resources because if bank resources are used and unfounded payments are made, the banks will not be able to pay the depositors and will become bankrupt. By examining the researches in the field of banking, it was found that most of the researches have focused on the optimal combination of the investment portfolio in the capital market, and less researchers have paid attention to the discussion of the optimal combination in the money market. Most of the researches that used operational and statistical research methods were related to industrial issues, and less in financial issues and operational research discussions were used. In the optimal portfolio of the combination of facilities or investments, mostly the genetic algorithm has been used and less than other fuzzy methods have been used in the conditions of uncertainty. Therefore, in this research, the improvement of facility payment modeling has been addressed by using convolutional neural networks and CNN-LSTM modeling.
اصغر پور، حسین، (۱۳۸۸). اثر بي ثباتي سياسي بر رشد اقتصادي ايران: رهيافت غيرخطي APARCH .
خواجوی، شکراله ، غیوری مقدم، علی، (۱۳۹۲). بررسی کاربرد تحلیل پوششی دادهها در مقایسه و ارزیابی عملکرد واحدهای تجاری.
دامی، سینا ، خیری، فرشته،(۱۳۹۷). شناسایی تقلب در پرداخت کارت های اعتباری با شبکه عصبی حافظه طولانی کوتاه مدت (LSTM). سومین کنفرانس ملی فناوری در مهندسی برق و کامپیوتر.
راعی، رضا، فرهادی، روح الله، شیروانی، امیر، (۱۳۹۰). رابطه در گذر زمان بین بازده و ریسک: شواهدی از الگوی قیمت گذاری دارایی سرمایه ای در گذر زمان ICAPM، فصلنامه چشم انداز مدیریت مالی دانشگاه شهید بهشتی، تهران.
شریف فر، امیر، خلیلی عراقی، مریم، رئیسی وانانی، ایمان، فلاح شمس، میر فیض،(۱۴۰۱). کاربرد معماریهای یادگیری عمیق در پیشبینی قیمت سهام (رویکرد شبکه عصبی پیچشی CNN)، دوره ۱۰، شماره ۳، صفحه ۱-۲۰.
صالحی، فهمیه، صالحی، مجتبی،اسکندری، میثم(۱۳۹۳). بهینه سازی سبد تسهیلات اعطایی موسسات مالی با استفاده از برنامه ریزی ریاضی و الگوریتم ژنتیک (مطالعه موردی بانک تجارت)، فصلنامه توسعهی مدیریت پولی و بانکی، دوره۲، شماره۳.
عسگر زاده، مجید،و دیگران، (۱۳۸۶). بررسی ریسک عملیاتی بانکداری الکترونیکی یکپارچه و ارائهی راهکارهای کاهش مخاطرات آن، اولین کنفرانس جهانی بانکداری الکترونیک.
References Ansari, A., Riasi,A., (2016). Customer Clustering Using a Combination of Fuzzy C-Means and Genetic Algorithms.
Adnan et al, R.M., (2020). Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs,J. Hydrol.
Armantier, O., Ghysels, E., Sarkar, A., Shrader, J., (2015). Discount window stigma during the 2007-2008 financial crisis. J. Financ. Econ. 118 (2), 317–335.
Al Machot,F. et al., (2019). A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors.
Bock, H., (2007). Clustering methods: A history of k-means algorithms Selected Contributions in Data Analysis and Classification, . 161-172.
Bhandari, P., (2022). Missing Data | Types, Explanation, & Imputation. Revised on November 11, 2022.
Bernanke, B., ( 2009). The federal reserve's balance sheet: an update. In: A Speech at the Federal Reserve Board Conference on Key Developments in Monetary Policy, Washington, D.C.
Bose, I., Chen, X., (2015). Detecting the migration of mobile service customers using fuzzy clustering. Chen, X.D., (2017). Analysis and research of common clustering algorithm in data miningDigital Technol. Appl., pp. 151-152.
Du S., Li J., (2019). Parallel processing of improved knn text classification algorithm based on Hadoop. In: 2019 7th International Conference on Information, Communication and Networks (ICICN), 167-170.
Dormann et al, C.F., (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.
Estivill-Castro V., Houle M.E., (2001). Robust distance-based clustering with applications to spatial data mining,Algorithmica, 30 (2) , 216-242.
Guo,G., Wang, H., Bell, D., Greer, Y., (2003). KNN model-based approach in classificationOTM Confederated International Conferences on the Move to Meaningful Internet Systems, 986-996.
Howell, E., (2021). 4 Techniques To Deal With Missing Data in Datasets, Simple methods that can nullify the effects of missing values, Published in Towards Data Science, Sep 17.
Huang, X.Y. , (2018). An improved KNN algorithm and its application in real-time car-sharing prediction., Dalian University of Technology, Daian, China ,M.S. thesis.
Huang et al., Huang J., Wei Y., Yi J., Liu M., (2018). An improved KNN based on class contribution and feature weighting. In: 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 313-316.
Henderi, T., Wahyuningsih, T., Rahwanto, E., (2021). ComparisonofMin-MaxnormalizationandZ-ScoreNormalizationintheK-nearest neighbor (KNN) Algorithm to The Accuracy of Type Breast Cance, International Journal of Informatics and Information SystemVol.4,NO.1,13-20.
Khosroyani, M., Heydarpoor, F., Yaghoob-nezhad, A., & Poorzamani, Z., (2022). An artificial neural network model for predicting the liquidity risk of Iranian private banks. Int. J. Nonlinear Anal. In Press, 1–11 ISSN: 2008-6822 (electronic); http://dx.doi.org/10.22075/ijnaa.2022.29118.4071. [In Persian].
Khalila,S, Amritb, CH, Kocha, T, Dugundjia, E.,(2021). Forecasting public transport ridership: Management of Information system by using CNN and LSTM Architecture, The 12th International Conference on Ambient Systems, Networks and Technologies (ANT).
Krizhevsky, A., Sutskever, I., Hinton, G.E., )2017(. Imagenet classification with deep convolutional neural networks. Communications of the ACM 60, 84 – 90. URL: https://search-ebscohost-com.proxy.uba.uva.nl:2443/login.aspx?direct=true&db=buh&AN= 123446102&site=ehost-live&scope=site.
Mohammadi, N., Zangeneh, M., (2016). Customer credit risk assessment using artificial neural networksIJ Information Technology and Computer Science, 8 (3) , 58-66.
Ngufor, C., Van Houten, H., Caffo, B.S., Shah, N.D., McCoy, R.G.,(2019). Mixed Effect Machine Learning: a framework for predicting longitudinal change in hemoglobin A1cJ. Biomed. Inform, 56-67.
Ole Hjelkrem.L , Eilif de Lange.P., (2023). Explaining Deep Learning Models for Credit Scoring with SHAP: A Case Study Using Open Banking Data, J. Risk Financial Management., 16(4), 221; https://doi.org/10.3390/jrfm16040221.
Oquab, M., Bottou, L., Laptev, I., Sivic, J., (2014). Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks, in: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, United States. URL: https://hal.inria. fr/hal-00911179. conference version of the paper.