palaeoechology and taphonomy of Albian-Cenomanian Echinoids of Kazhdumi Formation in Firouzabad section, Zagros Basin
Subject Areas : Petroleum GeologyBabak Sedghi 1 , Ali Bahrami 2 , Yazdi Yazdi 3
1 - Ph.D. in Paleontology & Stratigraphy, Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
2 - دانشگاه اصفهان
3 - professor
Keywords: Kazhdumi, Echinoderms, Taphonomic, Epifauna, Diapirs, ,
Abstract :
Kazhdumi Formation deposits in Firouzabad section were investigated regarding the postmortem and burial events of echinoderms, from about 150 echinoderm fossils which include 10 genera and 13 species of Coenholectypus neocomiensis, Phymosoma binexilis, Dorocidaris taouzensis, Cottaldia aff. Benettiae, Leptosalenia sergipensis, Phymosoma baylei, Micropedina olisiponensis, Tetragramma deshayesi, Macraster douvillei, Mecaster batnensis, Macraster obtritus, Pliotoxaster comanchei, Macraster sp., Hemiaster sp. most part of them suffer from disarticulation and fragmentation, radial cracks and shell deformation (test outline distortion and radial cracking) and volume change and biological erosion (bioerosion) and perforation by living worms (microboring). Of course, after volume changes, fractures or taphonomic compression, the existing solutions (hydrocarbon and solutions rich in iron, manganese and sometimes silica) hydroxides have been replaced in the cracks. The test of these echinoderms has been used by symbiotic epifauna such as Osterids and Gryphaes as food and attachment points and shelter after their death and burial. It seems that the volume change, crushing, solution injection and fauna bending are influenced by the tectonic pressure of the salt domes of the region and the soft lithology (high plasticity) of the Kazhdami formation between the Darian and Sarvak formations.
[6] AFGHAH, M., PARVANEH NEJAD SHIRAZI, M., KESHAVARZI, M., 2020, Biostratigraphy of the Kazhdumi Formation (Albian), northeast of Shiraz, Zagros Basin (SW of Iran). Explore the latest publications in Geoscience, and find Geoscience experts.
[7] ALIZADEH, B., SARAFDOKHT, H., RAJABI, M., OPERA, A., JANBAZ, M. 2012, Organic geochemistry and petrography of Kazhdumi (Albian–Cenomanian) and Pabdeh (Paleogene) potential source rocks in the southern part of the Dezful Embayment, Iran. OrganicGeochemistry, Volume 49, August 2012, Pages 36-46.
[8] BIDAR, A., DE Villoutreys, O., 1974, Sur la présence du genre américain Macraster dans le Cénomanien des Alpes-Maritimes. Comptes rendus hebdomadaires des séances de l’Académie des sciences. Série D: Sciences Naturelles 278, 1179–1181.
[9] BLACK, R. M. 1988, The Elements of Palaeontology. Cambridge University press, Australia.404 P.
[10] BORDENAVE, M.L. AND BURWOOD, R. 1990, Source Rock Distribution and Maturation in the Zagros Belt; Provenance of the Asmari and Bangestan Reservoir Oil Accumulations. Organic Geochemistry, 16, 369-387.
[11] BOLANDI, V., KADKHODAIE-ILKHCHI, A., ALIZADEH, B., TAHMORASI, J., FARZI, R., 2015, Source rock characterization of the Albian Kazhdumi formation by integrating well logs and geochemical data in the Azadegan oilfield, Abadan plain, SW Iran. Journal of Petroleum Science and Engineering. Volume 133, September 2015, Pages 167-176.
[12] BORDENAVE, M. L., HEGRE, J. A. 2010, Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geological Society, London, Special Publications, Volume 330, Pages 291 – 353.
[13] BOURDON, J., WRIGHT, K., LUCAS, S.G., SPIELMANN, J.A., & PENCE, R. 2011,Selachians from the Upper Cretaceous (Santonian) Hosta Tongue of the Point Lookout Sandstone, central New Mexico: Bulletin 52 (Vol. 52). New Mexico Museum of Natural History and Science.
[14] BULOT, L.G., VINCENT, B., 2010, Systematic paleontology of Aptian and Albian ammonites from southwest Iran. Books Published: January 01, 2010.
[15] CAPPETTA, H. (2012). Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: Teeth). In: H.-P. Schultze (Ed.) Handbook of palaeoichthyology, vol. 3E. Verlag F. Pfeil, München, pp 512.
[16] CLEGG, E. L. G. 1933, Echinoidea from the Persian Gulf. Palæontologica Indica, New Series, Memoire 22, 1-35.
[17] COLLIGNON, M., 1950. Recherches sur les faunes albiennes de Madagascar. II - Les Echinides d’Ambarimaninga. Annales Géologiques du Service Des Moines, Madagascar 17, 5–16.
[18] COTTEAU, G., & GAUTHIER, V., 1895. Mission scientifique en Perse par I. De Morgan. Etudes Geologique, 3 (2): 1-107.
[19] DANUTA, O. N. 2007, Late Cretaceous (Turonian – Coniacian) irregular echinoids of western Kazakhstan (Mangyshlak) and southern Poland (Opole): Acta Geologica Polonica, v. l, p 1-87.
[20] DURHAM, J.W., 1966, Ecology and Paleoecology. In: R.C. Moore (Ed.), Treatise on Invertebrate Paleontology: Geological Society of America & The University of Kansas; Boulder, Colorado, v. 1, p. 257-265.
[21] ERNST, G. and E. SEIBERTZ. 1977, Concepts and methods of Echinoid Biostratigraphy. In: E.G. Kauffman & J.E. Hazel (Eds), Concepts and Methods of Biostratigraphy: Dowden, Hutchinson and Ross, Inc.; Stroudsburg, Pennsylvania, p. 541-563
[22] FLÜGEL, E. 1979, Microfacies of Carbonate Rocks. Springer Heidelberg Dordrecht London New York.
[23] GALLEMÌ, J., LOPEZ, G.M., MARTINEZ, P., MUNOZ, ˜ J., PONS, J.M., 1997. Albian–Cenomanian and Campanian–Maastrichtian biostratigraphy of southeast Spain. Cretaceous Research 18, 355–372.
[24] GAUTHIER, M.V., 1902. Etudes géologiques. Partie 3 - échinides, supplément. In: Morgan de, J.(Ed.), Mission Scientist.
[25] GUINOT, G., UNDERWOOD, C.J., CAPPETTA, H., & WARD, D.J. 2013, Sharks (Elasmobranchii: Euselachii) from the late Cretaceous of France and the UK. Journal of Systematic Palaeontology, 11(6), 589-671.
[26] JARVIS, I., ANDREW, S. G., HUGH C. J., and MARTIN A. P. 2006, Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma), Published online by Cambridge University Press.
[27] JENKINS, H.C., MATTHEWS, A., TSIKOS, H., EREL, Y., 2007, Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography and Paleoclimatology. Online ISSN:2572-4525, Print ISSN:2572-4517.
[28] GHAYENI, H, MAHMUDY-GHARAEI, M, H., 2023, Hydrocarbon generation potential of Kazhdumi Formation in Tang E- Magar and Perchestan sections compared to the other oil field in the Zagros basin. Scientific Quarterly Journal, GEOSCIENCES, vol. 33, issue 1, Serial No.127, Spring 2023, pp 27- 42.
[29] KANAZAWA, K., 1992, Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology 35, 733–750.
[30] KIER, P. M. 1972, Tertiary and Mesozoic Echinoids of Saudi Arabia. Smithsonian Contributions to Paleobiology 10, 1-105., page(s): 23-24; fig. 7, pl. 1: figs 1-6, pl. 2: figs 1-2.
[31] LAMBERT, J., 1931, Etude sur les échinides fossiles du Nord de l’Afrique. Mémoires de la Société géologique de France 7, 5–108.
[32] Kriwet, J. 2005, A comprehensive study of the skull and dentition of pycnodont fishes. Zitteliana, 45, 135-188.
[33] KROH A. & SMITH A.B. 2017, Classification and phylogeny of post-Palaeozoic echinoids. Journal of Systematic Palaeontology, London, vol. 7, p. 147-212.
[34] LECKIE, RM, TIMOTHY, B. J; CASHMAN, V. 2002, Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17(3), 13-1-13-29,
[35] MASROUR, M., AOUTEM, M., ATROPS, F., 2004. Succession des peuplements d’échinides du Crétacé inférieur dans le Haut Atlas atlantique (Maroc); révision systématique et intérêt stratigraphique. Geobios 37.
[36] NÉRAUDEAU, D., FLOQUET, M., 1991. Les échinides Hemiasteridae : marqueurs écologiques de la plate-forme castillane et navarro-cantabre (Espagne) au Crétacé supérieur. Palaeogeography, Palaeoclimatology, Palaeoecology 88, 265–281.
[37] NÉRAUDEAU, D., DAVID, B., MADON, C., 1998, Tuberculation in spatangoid fascioles: delineating plausible homologies. Lethaia 31, 323–334.
[38] NEUMANN, C., 1996, The mode oflife and paleobiogeography ofthe genus Douvillaster Lambert (Echinoidea: Spatangoida) as first recorded in the Lower Cretaceous (Albian of Spain). Berliner geowissenschaftliche Abhandlungen 18, 257–265.
[39] NICHOLS, D., 1972, The water-vascular system in living and fossil echinoderms. Palaeontology 15, 519–538.
[40] POYATO-ARIZA, F.J., & WENZ, S. 2002, A new insight into pycnodontiform fishes. Geodiversitas, 24(1), 139-248.
[41] RAHIMINEJAD, A. H., YAZDI, M. & A. BAHRAMI 2020, Palaeoenvironements and taphonomy of clypasteroids in Miocene carbonates of Esfahan- Sirjan Basin. Central Iran. Springer-Verlag GmbH Germany, part of Springer Nature 2020 Facies. 66: 14.
[42] RAISOSSADAT, N., HAMDANI, H., LATIL, J., Jaillard, E., 2021, The Kazhdumi Formation (Lower Cretaceous, upper Aptian–upper Albian) in the Zagros Basin, Iran. Cretaceous Research 127(1):104920
de Castro Manso, C.L., Souza-Lima, W., 2003. O Equinoide Douvillaster Lambert, 1917 na Formac¸ ao
[43] SMITH, A.B., 1980. The structure, function, and evolution of tube feet and ambulacral pores in irregular echinoids. Palaeontology 23, 39–84.
[44] SMITH, A.B., STOCKLEY, B., 2005. Fasciole pathways in spatangoid echinoids: a new source of phylogenetically informative characters. Zoological Journal of the Linnean Society 144, 15–35.
[45] VILLIER, L., DAVID, B., NÉRAUDEAU, D., 2001. Ontogenetic and morphological evolution of the ambulacral pores in Heteraster (early spatangoids). In: Barker, M. (Ed.), Echinoderm 2000. Balkema, Rotterdam, The Netherlands, pp. 563–567.
[46] SIVERSSON, M., CEDERSTRÖM, P., & RYAN, H.E. 2022, A new dallasiellid shark from the lower Campanian (Upper Cretaceous) of Sweden. GFF, 144(2), 118-125.
[47] VILLIER, V., NÉRAUDEAU, D., CLAVEL, B., NEUMANN, C., 2004. Phylogeny of early Cretaceous Spatangoids (Echinodermata: Echinoidea) and taxonomic implications. Palaeontology 47, 265–292.
[48] VILLIER, L., NAVARRO, N., 2004. Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida (Echinoidea, Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology 214, 265–282.
[49] VINCENT, B., VAN BUCHEM, F.S.P., BULOT, L., JALALI, M., SWENNEN, R., HUSSEINI, A.S., & BAGHBANI, D., 2015. Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in Coastal Fars (SW Iran). Marine and Petroleum Geology, 63: 47-67.
[50] VINCENT, S, J. SAINTOT, A., ARAL, M., OKAY, I., NIKISHIN, A.M., 2016, Comment on “Relict Basin Closure and Crustal Shortening Budgets During Continental Collision: An Example From Caucasus Sediment Provenance” . Tectonics, Volume37, Issue3, March 2018, Pages 1006-1016.
[51] VULLO, R., GUINOT, G., & BARBE, G. 2016, The first articulated specimen of the Cretaceous mackerel shark Haimirichia amonensis gen. nov. (Haimirichiidae fam. nov.) reveals a novel ecomorphological adaptation within the Lamniformes (Elasmobranchii). Journal of Systematic Palaeontology, 14(12), 1003-1024.
[52] YAVARI. M., YAZDI. M., GHALAVAND, H., ADABI, M. H 2017, Urgonian type microfossils of the dariyan formation, from Southwest of Iran (Northeast of Shiraz). Journal of sciencies, Islamic Republic of Iran.
[53] ZIEGLER, B., 1983, Introduction to Palaeobiology General Palaeontology. Ellis Horwood Publication. 225p.