Presenting the innovative supply chain model of the oil industry under conditions of uncertainty
Subject Areas :Ali Kamaei 1 , Abotorab Alirezaee 2 , ghanbar abbaspur esfsdsn 3 , ashraf shaimansori 4
1 - Department of management, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Associate Professor, Department of Industrial Management, Faculty of Management, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 - University of Tehran
4 - Azad University, South Tehran branch
Keywords: Supply chain, oil, uncertainty, fuzzy Delphi, fuzzy Dimetal, thematic analysis,
Abstract :
In this research, the supply chain management of the oil industry under conditions of uncertainty was examined. The research method is mixed (qualitative-quantitative). The qualitative part of the research was done with thematic analysis method, and in this part, in order to complete the information, the opinions of 16 professors, experts and experts in the field of oil and supply chain were used by purposeful sampling and until theoretical saturation was reached. In the quantitative phase, two fuzzy Delphi and Fuzzy Dimtel approaches were used to accept or reject uncertainty indicators and identify cause and effect relationships between them. Based on the results of the qualitative phase of the research, the oil supply chain includes six main stages of extraction and production, transportation, refining, distribution, storage and final distribution. In each of these stages, a number of sub-stages and 38 cases of uncertainty were identified. Based on the results of the quantitative part of the research, all 38 cases of uncertainty were confirmed from the point of view of experts in the fuzzy Delphi method. Based on the fuzzy Dimetal method, the cause and effect relationships of the uncertainties in the system were evaluated. The results of the quantitative section show that extraction and production have the greatest influence on the supply chain, and transportation, refining, distribution, storage and final distribution are in the next levels of influence. At the end, a model for uncertainties, their explanation and management solutions are provided.
احمدی, اسماعیل, ملکی, محمد حسن, ثانوی فرد, رسول، فتحی, محمد رضا. (1399). آیندهپژوهی زنجیره تأمین صنعت نفت با رویکرد سناریونگاری. آینده پژوهی ایران، 81(5)#
امیدواری، زهرا؛ ناعمه، زرین پور (1399) ارائه یک مدل بهینهسازی استوار برای طراحی استراتژیک و عملیاتی زنجیره تامین نفت، مجله : چشم انداز مدیریت صنعتی » زمستان 1399 - شماره 40 رتبه ب/ISC (37 صفحه - از 155 تا 191 )#
بنشاسته، آرزو؛ صاحبی. هادی؛ جبل عاملی. محمدسعید (1399 )، طراحی زنجیره تأمین تاب آور در صنعت نفت تحت ریسکهای عملیاتی و اختلالی: مطالعه موردی، نشریع علمی ( فصلنامه ) پژوهشهای سیاستگذاری و برنامه ریزی انرژی، سال ششم، شماره 19#
ترابی، سیدعلی و شرافت، محمدرضا،1392،طراحی یک شبکه زنجیره تأمین پایدار برای صنعت نفت تحت شرایط عدم قطعیت،دهمین کنفرانس بین المللی مهندسی صنایع،تهران#
صادقی راد، محمد (1399) اهمیت تکمیل زنجیره ارزش و توجه به صنایع پایین دستی پتروشیمی،ششمین کنفرانس بین المللی مهندسی شیمی و نفت،تهران،،،https://civilica.com/doc/1033405#
کیقبادی، امیررضا. (1400)، تبیین مدلی برای ارزیابی پایداری زنجیره تامین در صنایع نفت و گاز براساس مدل معادلات ساختاری، مجله توانمندسازی مدیریت سرمایه انسانی، دوره 4، شماره 2#
مظفری، محمد مهدی؛ اجلی، مهدی؛ جعفرقلی، دل آرام (1399). بررسی تاثیر عملیات مدیریت زنجیره تامین بر مزیت رقابتی و عملکرد شرکت (مورد مطالعه: مجتمع صنعتی ماموت)، نشریه اندیشه آماد » دوره 19، شماره 74 (پاییز 1399)#
Abdolazimi, O., Esfandarani, M. S., Salehi, M., & Shishebori, D. (2020a). Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory. Journal of Cleaner Production, 264, 121566.#
Al-Othman, W. B., Lababidi, H. M., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimisation of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. #
Alimohammadi Ardekani, M. (2022). A Multi-Objective Supply Chain Configuration for the Oil Industry under Uncertainty. Advances in Industrial Engineering, 56(1), 15-41. doi: 10.22059/aie.2022.335295.1816 #
ANJI, H., ZAHEDI, S., MARVAST, M. A., KANANPANAH, S., SADI, M. & SHOKRI, S.2010. Determination of suitable feedstock for refineries utilizing LP and NLP models. International Journal of Chemical Engineering and Applications, 1,225.#
Al-Qahtani K., Elkamel A. (2010) Robust planning of multisite refinery networks: Optimization under uncertainty, Comput. Chem. Eng. 346, 985–995. #
Asamoah, D., Agyei-Owusu, B., Andoh-Baidoo, F. K., & Ayaburi, E. (2021). Inter-organizational systems use and supply chain performance: Mediating role of supply chain management capabilities. International journal of information management, 58, 102195.#
Aslem, J., Aqeela S., Nokhaiz T., Yun, K., (2021). Factors influencing blockchain adoption in supply chain management practices: A study based on the oil industry, Journal of Innovation & Knowledge 6 (2021) 124–134 #
Bauquis P.R. (2001) A reappraisal of energy supply and demand in 2050, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 56, 4, 389–402.#
Beamon, B. M. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281-294. #