Elymus Repens Optimization (ERO); A Novel Agricultural-Inspired Algorithm
Subject Areas : IT Strategy
1 -
Keywords: Elymus Repens Optimization, meta-heuristic algorithms, Rhizome Optimization Operator, Stolon Optimization Operator,
Abstract :
Optimization plays a crucial role in enhancing productivity within the industry. Employing this technique can lead to a reduction in system costs. There exist various efficient methods for optimization, each with its own set of advantages and disadvantages. Meanwhile, meta-heuristic algorithms offer a viable solution for achieving the optimal working point. These algorithms draw inspiration from nature, physical relationships, and other sources. The distinguishing factors between these methods lie in the accuracy of the final optimal solution and the speed of algorithm execution. The superior algorithm provides both precise and rapid optimal solutions. This paper introduces a novel agricultural-inspired algorithm named Elymus Repens Optimization (ERO). This optimization algorithm operates based on the behavioral patterns of Elymus Repens under cultivation conditions. Elymus repens is inclined to move to areas with more suitable conditions. In ERO, exploration and exploitation are carried out through Rhizome Optimization Operator and Stolon Optimization Operators. These two supplementary activities are used to explore the problem space. The potent combination of these operators, as presented in this paper, resolves the challenges encountered in previous research related to speed and accuracy in optimization issues. After the introduction and simulation of ERO, it is compared with popular search algorithms such as Gravitational Search Algorithm (GSA), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Firefly Algorithm (FA). The solution of 23 benchmark functions demonstrates that the proposed algorithm is highly efficient in terms of accuracy and speed.
[1]. S.A. Mirjalili, "The Ant Lion Optimizer", Advances in Engineering Software , Vol. 83 , pp. 80–98, 2015.
[2]. F. MiarNaeimi, G.R. Azizyan, M. Rashki, "Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems", Knowledge-Based Systems, Vol. 213, pp. 1-17, 2021.
[3]. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT press, 1992.
[4]. J.R. Koza, Genetic Programming: On the Programming of Computers By Means of Natural Selection, MIT press, 1992.
[5]. F. Glover, "Tabu search—Part I" , ORSA J. Comput. Vol. 1, No. 3, pp.190–206, 1989.
[6]. I. Rechenberg, J.M. Zurada, R.J. Marks II, C. Goldberg, Evolution strategy, in computational intelligence: Imitating life, in: Computational Intelligence Imitating Life, IEEE Press, Piscataway, 1994.
[7]. N.J. Radcliffe, P.D. Surry, "Formal Memetic Algorithms", in: AISB Workshop on Evolutionary Computing, Springer, pp. 1–16, 1994.
[8]. R.G. Reynolds, "An introduction to cultural algorithms", in: Proceedings of the Third Annual Conference on Evolutionary Programming, World Scientific, pp. 131–139,1994.
[9]. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, "Optimization by simulated annealing", Science, Vol. 220 , No. 4598, pp. 671–680, 1983.
[10]. R. Storn, K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim. Vol. 11, No.4, pp. 341–359, 1997.
[11]. X. Yao, Y. Liu, G. Lin, "Evolutionary programming made faster", IEEE Trans. Evol. Comput. Vol. 3 , No. 2, pp. 82–102, 1999.
[12]. Y.K. Kim, J.Y. Kim, Y. Kim, "A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines", Appl. Intell. Vol. 13 , No. 3, pp. 247–258, 2000.
[13]. A. Sinha, D.E. Goldberg, "A Survey of Hybrid Genetic and Evolutionary Algorithms", IlliGAL report, Vol. 2003004, 2003.
[14]. E. Atashpaz-Gargari, C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", in: 2007 IEEE Congress on Evolutionary Computation, IEEE, pp. 4661–4667, 2007.
[15]. D. Simon, "Biogeography-based optimization", IEEE Trans. Evol. Comput. Vol. 12 , No. 6, pp. 702–713, 2008.
[16]. E. Cuevas, A. Echavarría, M.A. Ramírez-Ortegón, "An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation", Appl. Intell. Vol. 40, No. 2 , pp. 256–272, 2014.
[17]. S. Mirjalili, "SCA: A sine cosine algorithm for solving optimization problems", Knowl.-Based Syst., Vol. 96, pp. 120–133, 2016.
[18]. F. MiarNaeimi, G. Azizyan, M. Rashki, "Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems", Eng. Comput., Vol. 34 , No. 4, 2018.
[19]. H. Du, X. Wu, J. Zhuang, "Small-world optimization algorithm for function optimization", in: International Conference on Natural Computation, Springer, pp. 264–273, 2006.
[20]. R.A. Formato, "Central force optimization: A new metaheuristic with applications in applied electromagnetics", in: Progress in Electromagnetics Research, PIER 77, pp. 425–491,2007.
[21]. M.H. Tayarani-N, M.R. Akbarzadeh-T, "Magnetic optimization algorithms a new synthesis", in: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2659–2664, 2008.
[22]. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, "GSA: A gravitational search algorithm", Inf. Sci., Vol. 179, No. 13, pp. 2232–2248, 2009.
[23]. A. Kaveh, S. Talatahari, "A novel heuristic optimization method: Charged system search", Acta Mech. Vol. 213, pp. 267–289, 2010.
[24]. A.Y.S. Lam, V.O.K. Li, "Chemical-reaction-inspired metaheuristic for optimization", IEEE Trans. Evol. Comput., Vol. 14, No 3, pp. 381–399, 2010.
[25]. A. Hatamlou, "Black hole: A new heuristic optimization approach for data clustering", Inf. Sci., Vol. 222 , pp. 175–184, 2013.
[26]. F.F. Moghaddam, R.F. Moghaddam, M. Cheriet, "Curved space optimization: A random search based on general relativity theory", arXiv, Vol. 1208, No. 2214, 2012.
[27]. A. Kaveh, T. Bakhshpoori, "Water evaporation optimization: A novel physically inspired optimization algorithm", Comput. Struct., Vol. 167, pp. 69–85, 2016.
[28]. H. Varaee, M.R. Ghasemi, "Engineering optimization based on ideal gas molecular movement algorithm", Eng. Comput. Vol. 33 , No. 1, pp. 71–93, 2017.
[29]. S. Mirjalili, S.M. Mirjalili, A. Hatamlou, "Multi-verse optimizer: A natureinspired algorithm for global optimization", Neural Comput. Appl., Vol. 27 , No. 2, pp. 495–513, 2016.
[30]. A. Kaveh, M.I. Ghazaan, "A new meta-heuristic algorithm: Vibrating particles system", Sci. Iran. Trans. A Civ. Eng., Vol. 24, No 2, pp. 551-566, 2017.
[31]. R. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory", in: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp. 39–43, 1995.
[32]. S. Saremi, S. Mirjalili, A. Lewis, "Grasshopper optimisation algorithm: Theory and application", Adv. Eng. Softw., Vol. 105, pp. 30–47, 2017.
[33]. S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowl.-Based Syst., Vol. 89, pp.228–249, 2015.
[34]. X.L. Li, "A New Intelligent Optimization-Artificial Fish Swarm Algorithm", (Doctor thesis), Zhejiang University of Zhejiang, China, 2003.
[35]. D. Karaboga, "An Idea Based on Honey Bee Swarm for Numerical Optimization", Technical report-tr06, Erciyes university, engineering faculty, computer., 2005.
[36]. M. Roth, "Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks", Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 2005.
[37]. M. Dorigo, M. Birattari, T. Stutzle, "Ant colony optimization", IEEE Comput. Intell. Mag. Vol. 1, No. 4, pp. 28–39, 2006.
[38]. M. Eusuff, K. Lansey, F. Pasha, "Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization", Eng. Optim., Vol. 38, No. 2, pp. 129–154, 2006.
[39]. A. Mucherino, O. Seref, "Monkey search: A novel metaheuristic search for global optimization", in: AIP Conference Proceedings, American Institute of Physics, pp. 162–173, 2007.
[40]. Y. Shiqin, J. Jianjun, Y. Guangxing, "A dolphin partner optimization", in: Intelligent Systems, GCIS’09. WRI Global Congress On, IEEE, pp. 124–128, 2009.
[41]. X.S. Yang, "Firefly algorithm, stochastic test functions and design optimisation", arXiv, Vol. 1003, No. 1409, 2010.
[42]. X.S. Yang, "A new metaheuristic bat-inspired algorithm", in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, pp. 65–74, 2010.
[43]. A. Askarzadeh, A. Rezazadeh, "A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer", Int. J. Energy Res., Vol. 37, No. 10, pp.1196–1204, 2013.
[44]. W.T. Pan, "A new fruit fly optimization algorithm: Taking the financial distress model as an example", Knowl.-Based Syst., Vol. 26, pp. 69–74, 2012.
[45]. B. Wang, X. Jin, B. Cheng, "Lion pride optimizer: An optimization algorithm inspired by lion pride behavior", Sci. China Inf. Sci., Vol. 55, No. 10, pp. 2369–2389, 2012.
[46]. A.H. Gandomi, A.H. Alavi, "Krill herd: A new bio-inspired optimization algorithm", Commun. Nonlinear Sci., Vol. 17 , No. 12, pp. 4831–4845, 2012.
[47]. S. Mirjalili, S.M. Mirjalili, A. Lewis, "Grey wolf optimizer", Adv. Eng. Softw., Vol. 69 , pp. 46–61, 2014.
[48]. A.H. Gandomi, X.S. Yang, A.H. Alavi, "Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems", Eng. Comput., Vol. 29, No. 1, pp. 17–35, 2013.
[49]. S. Mirjalili, "Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Comput. Appl., Vol. 27, No. 4 , pp. 1053–1073, 2016.
[50]. S. Mirjalili, "A. Lewis, The whale optimization algorithm", Adv. Eng. Softw., Vol. 95, pp. 51–67, 2016.
[51]. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Adv. Eng. Softw., Vol. 114, pp.163–191, 2017.
[52]. A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, "Harris hawks optimization: Algorithm and applications", Future Gener. Comput. Syst., Vol. 97 pp. 849–872, 2019.
[53]. G. Azizyan, F. Miarnaeimi, M. Rashki, N. Shabakhty, "Flying squirrel optimizer (FSO): A novel SI-based optimization algorithm for engineering problems", Iran. J. Optim., Vol. 11, No. 2, pp.177–205, 2019.
[54]. N. Moosavian, B.K. Roodsari, "Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks", Swarm Evol. Comput., Vol. 17, pp. 14–24, 2014.
[55]. A.A. Volk, R.W. Epps, D.T. Yonemoto, S. B.Masters, F. N. Castellano, K. G. Reyes , M. Abolhasani.,"AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning",Nat Commun, Vol. 14, 2023.
[56]. A.M.K. Nambiar, C. P. Breen,T. Hart, T. Kulesza, T. F. Jamison, K. F. Jensen". Bayesian optimization of computer-proposed multistep synthetic routes on an automated robotic flow platform", ACS Cent. Sci. Vol. 8,pp. 825–836, 2022.
[57]. Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin -, L. Cronin," An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials", Sci. Adv. , Vol. 8, 2022.
[58]. D. Karan, G. Chen, N. Jose, J. Bai, P. McDaid, A.A. Lapkin, " A machine learning-enabled process optimization of ultra-fast flow chemistry with multiple reaction metrics", Reaction Chemistry & Engineering, vol. 9, pp. 619-629, 2024.
[59]. G.-N. Ahn, J.H. Kang, H.J. Lee, B.E. Park, M. Kwon, G.S. Na, H. Kim, D.H. Seo, D.P. Kim., "Exploring ultrafast flow chemistry by autonomous self-optimizing platform", Chem. Eng. J., Vol. 453, 2023.
[60]. M. Gholami, S.M. Muyeen, S. Lin,"Optimizing microgrid efficiency: Coordinating commercial and residential demand patterns with shared battery energy storage,Journal of Energy Storage,Volume 88,2024.
[61]. D. Borkowski, P. Oramus, M. Brzezinka, "Battery energy storage system for grid-connected photovoltaic farm – energy management strategy and sizing optimization algorithm", J. Energy Storage, Vol. 72 , 2023.
[62]. K. Ullah, J. Quanyuan, G. Geng, R.A. Khan, S. Aslam, W. Khan," Optimization of demand response and power-sharing in microgrids for cost and power losses", Energies, Vol. 15, 2022.
[63]. S. Sakina Zaidi, S.S. Haider Zaidi, B.M. Khan, L. Moin,"Optimal designing of grid-connected microgrid systems for residential and commercial applications in Pakistan", Heliyon, Vol. 9 , 2023.
[64]. R. Asri, H. Aki, D. Kodaira," Optimal operation of shared energy storage on islanded microgrid for remote communities", Sustain. Energy, Grids Networks,Vol. 35 , 2023.
[65]. Q. Huang, H. Ding, N. Razmjooy, "Oral cancer detection using convolutional neural network optimized by combined seagull optimization algorithm", Biomedical Signal Processing and Control, Vol. 87, Part B, 2024.
[66]. M. M. Emam, E. H. Houssein, N. A.Samee, M. A. Alohali, M. E. Hosney, " Breast cancer diagnosis using optimized deep convolutional neural network based on transfer learning technique and improved Coati optimization algorithm", Expert Systems with Applications, Vol. 255, Part B,2024.
[67]. S. Almutairi, S. Manimurugan, B. G. Kim, M.M. Aborokbah, C. Narmatha, "Breast cancer classification using Deep Q Learning (DQL) and gorilla troops optimization (GTO)", Applied Soft Computing, Vol. 142, 2023
[68]. M. M. Emam, N. A. Samee, M. M. Jamjoom, E. H. Houssein, "Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm", Computers in Biology and Medicine, Vol. 160, 2023.
[69]. W. Zou, X. Luo, M. Gao, C. Yu, X. Wan, S. Yu, Y. Wu, A. Wang, W. Fenical, Z. Wei, Y. Zhao, Y. Lu, " Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function", Vol. 181 , Themed Issue: Cancer Microenvironment and Pharmacological Interventions, pp. 257-272, 2024.
[70]. J. Palmer, G. Sagar, "Agropyron repens (L.) Beauv. (Triticum repens L.; Elytrigia repens (L.) Nevski)", J. Ecol., Vol. 51, pp. 783–794, 1963.
[71]. P.A. Werner, R. Rioux, "The biology of Canadian weeds. 24. Agropyron repens (L.) Beauv. Can." J. Plant Sci., Vol. 57, pp. 905–919, 1977.
[72]. L.G. Holm, D.L. Plucknett., J.V. Pancho, J.P. Herberger, The World’s Worst Weeds, University Press: Honolulu, HI, USA, 1977.
[73]. C. Andreasen, I.M. Skovgaard, "Crop and soil factors of importance for the distribution of plant species on arable fields in Denmark", Agric. Ecosyst. Environ., Vol. 133, pp. 61–67, 2009.
[74]. J. Salonen, T. Hyvönen, H.A. Jalli, "Composition of weed flora in spring cereals in Finland—A fourth survey", Agric. Food Sci., Vol. 20, 2011.
[75]. P. A. Werneri , R. Rioux, "The Biology of Canadian Weeds. 24. Agropyron Repens (L.) Beauv", Canadian Journal of Plant Science, Vol. 57, pp. 905-919.
[76]. K.M. Ibrahim, P.M. Peterson, Grasses of Washington, D.C., Published by Smithsonian Institution Scholarly Press, Washington D.C., 2014.
[77]. X. Yao, Y. Liu, G. Lin, "Evolutionary Programming Made Faster", IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102, 1999.
[78]. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, " GSA: A Gravitational Search Algorithm", Information Sciences, Vol. 179, pp. 2232–2248, 2009.
[79]. X. Yang, " Firefly algorithms for multimodal optimization", International conference on stochastic algorithms foundations and applications, pp.169–178, 2009.
[80]. Y. Li, Y. Zhao, Y. Shang, J. Liu " An improved firefly algorithm with dynamic self-adaptive adjustment", PLoS ONE, Vol. 16 ,2021.
[81]. D. Wang, D. Tan, L. Liu, " Particle swarm optimization algorithm: an overview", Soft Comput., Vol. 22, pp. 387–408 , 2018.