Investigating the reservoir quality of Sarvk formation using multi-resolution graph-based and comparing it with petrographic data in an oilfield of Dezful Embayment
Subject Areas : Petroleum GeologySeyedeh Akram Jooybari 1 , Payman Rezaee 2 , Majid Mehdipour 3
1 - دکتری رسوب شناسی و سنگ شناسی رسوبی دانشگاه هرمزگان، بندرعباس
2 - Associate Professor, Department of Geology, University of Hormozgan, Bandar Abbas
3 - 3- Master of Petroleum Geology, Petroleum Engineering Development Company, Tehran
Keywords: Reservoir quality, MRGC, Sarvak formation, Petrography,
Abstract :
Sarvak Formation is one of the important carbonate reservoirs in Dezful Embayment. In order to evaluate the reservoir quality of this formation in one of the Dezful Embayment fields, multi-resolution graph-based method was used and compared with petrographic findings. The findings showed that the Sarvak formation in the studied field consists of 8 microfacies belonging to the sub-environments of the lagoon, carbonate bar, middle ramp and outer ramp, which were deposited in a homoclinal ramp environment. The main diagenesis processes affecting this reservoir include cementation, dissolution, fracture, stylolitization, and dolomitization. The results of multi-resolution graph-based analysis led to the identification of 3 electrofacies, EF1 electrofacies had the weakest reservoir parameters and EF3 facies had the best reservoir status. The majority of EF1 microfacies are grainstone microfacies and the majority of EF3 microfacies correspond to wackstone and packstone microfacies. Based on this, it seems that the lagoon sub-environment has a better reservoir condition than other sub-environments, especially the carbonate bar, and this is an important sign of the different performance of diagenesis processes in these sub-environments. In a vertical trend, the highest volume of hydrocarbon column is in the EF3 electrofacies and the lowest is EF1. In general, it can be stated that the use of multi-resolution graph-based analysis and comparison with petrographic findings is a suitable solution for accurate evaluation of the reservoir quality of carbonate reservoirs.
]1[ جویباری، س ا.، رضائی، پ.، مهدی پور،م. 1401 . بررسی توان مخزنی سازند سروک )سنومانین-تورونین( با تاکید واحدهای جریانی و تعیین ارتباط آن با ریزرخسارههای رسوبی این مخزن در یکی از میادین نفتی استان خوزستان، زاگرسچین خورده . زمین شناسی کاربردی پیشرفته، دوره 12 ، شماره 4 ، ص 888-909.
]2[ کدخدایی،ع.1401. زمین شناسی نفت، انتشارات دانشگاه تبریز، 512ص.
[3] ABBAS, M. S., KHUDHAIR, M. H., & AL-SAADI, O. S., 2022, Electro-Facies and Petrophysical Properties of the Hartha Formation in Selected Wells of East Baghdad Oil Field. Iraqi Journal of Science, 1129-1145.
[4] ABDEL-FATTAH, M. I., MAHDI, A. Q., THEYAB, M. A., PIGOTT, J. D., ABD-ALLAH, Z. M., & RADWAN, A. E., 2022, Lithofacies classification and sequence stratigraphic description as a guide for the prediction and distribution of carbonate reservoir quality: a case study of the Upper Cretaceous Khasib Formation (East Baghdad oilfield, central Iraq). Journal of Petroleum Science and Engineering, 209, 109835.
[5] AHMED, M. J., 2021, Microfacies analysis and depositional development of Shuaiba formation in the West Qurna oil field, Southern Iraq. Modeling Earth Systems and Environment, 7(4), 2697-2707.
[6] AL-ALI, A., SHAMS, A., & STEPHEN, K., 2019, Identification of Fault Systems and Characterization of Structural Model: A Case Study from the Cretaceous Reservoir in the Giant Oil Field, Southern of Iraq. In SPE Europec featured at 81st EAGE Conference and Exhibition. OnePetro.
[7] ASGHARI, M. R., JAHANI, D., SHEIKH ZAKARIAII, S. J. A., ARIAN, M., & ALE ALI, M., 2022, Sequence stratigraphy and its relationship with reservoir quality at Sarvak Formation in one of Zagros basin oil fields. Advanced Applied Geology, 12(3), 520-536.
[8] ASSADI, A., HONARMAND, J., MOALLEMI, S. A., & ABDOLLAHIE-FARD, I. , 2018, An integrated approach for identification and characterization of palaeo-exposure surfaces in the upper Sarvak Formation of Abadan Plain, SW Iran. Journal of African Earth Sciences, 145, 32-48.
[9] ASTEL, A., S. TSAKOVSKI, P. BARBIERI, AND V. SIMEONOV., 2007, Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets: Water Research, 41(19), 4566-4578.
[10] BARON, M., PARNELL, J., MARK, D., CARR, A., PRZYJALGOWSKI, M., FEELY, M., 2008. Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field , West of Shetland, UK. Marine Petroleum Geology, 25, 153-172
[11] BHATTI, A. A., ISMAIL, A., RAZA, A., GHOLAMI, R., REZAEE, R., NAGARAJAN, R., & SAFFOU, E., 2020, Permeability prediction using hydraulic flow units and electrofacies analysis. Energy Geoscience, 1(1-2), 81-91.
[12] CEREPI, A., BARDE, J.P., LABAT, N., 2003, High-resolution characterisation andintegrated study of a reservoir formation:the Danian carbonate platform in the Aquitaine Basin (France), Marine Petroleum Geology, 20, 1161-1183.
[13] DAS, S., WRAY, A., & DAS, R., 2021, Geo-mechanical Electro-facies Analysis Using High-resolution Unconfined Compressive Strength Derived from High-res Mechanical Property Image. In Fourth EAGE Borehole Geology Workshop , 1, 1-3.
[14] DAVIS, J. C., 2018, Electrofacies in reservoir characterization. Handbook of Mathematical Geosciences: Fifty Years of IAMG, 211-223.
[15] DOS PASSOS, F. V., BRAGA, M. A., CARELLI, T. G., & PLANTZ, J. B., 2020, Electrofacies Classification of Ponta Grossa Formation by Multi-Resolution Graph-Based Clustering (MRGC) and Self-Organizing Maps (SOM) Methods. Brazilian Journal of Geophysics, 38(1), 52-61.
[16] DOUSTI MOHAJER, M., AFGHAH, M., DEHGHANIAN, M., & SHEIKH ZAKARIAII, S. J., 2021, Biostratigraphy, Microfacies and Depositional Environment of the Sarvak Formation at the Pyun Anticline (Zagros Basin, Southwest of Iran). Acta Geologica Sinica‐English Edition, 95(5), 1647-1667.
[17] Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture, in W. E. Ham, ed., Classification of carbonate rocks: American Association of Petroleum Geologists Memoir 1, p. 108-121 Flugel, E., 2010. Microfacies of carbonate rocks analysis, Analysis, Interpretation and Application Second Edition Springer-Verlag Berlin Heidelberg. 1006 p.
[18] ESFANDYARI, M., MOHSENI, H., & HEIDARI, M., 2023, Facies analysis, depositional sequences and platform evolution of the Sarvak Formation (late Albian-Turonian) in the Zagros Basin, West of Iran. Journal of African Earth Sciences, 198, 104811. [19] FOROSHANI, J. S., MEHRABI, H., & RAHIMPOUR-BONAB, H., 2023, Reservoir heterogeneity of Upper Cretaceous Sarvak Formation in the Dezful Embayment, SW Iran: Implications of flow unit distribution, electrofacies analysis and geological-based reservoir zonation. Journal of African Earth Sciences, 104882.
[20] FLUGEL, E., 2010, Microfacies of carbonate rocks. Springer-Verlag, Berlin, 976 p.
[21] KENDALL, J., VERGÉS, J., KOSHNAW, R., & LOUTERBACH, M., 2020, Petroleum tectonic comparison of fold and thrust belts: the Zagros of Iraq and Iran, the Pyrenees of Spain, the Sevier of Western USA and the Beni Sub-Andean of Bolivia. Geological Society, London, Special Publications, 490(1), 79-103.
[22] KHAZAIE, E., NOORIAN, Y., MOUSSAVI-HARAMI, R., MAHBOUBI, A., KADKHODAIE, A., & OMIDPOUR, A., 2022, Electrofacies modeling as a powerful tool for evaluation of heterogeneities in carbonate reservoirs: A case from the Oligo-Miocene Asmari Formation (Dezful Embayment, southwest of Iran). Journal of African Earth Sciences, 195, 104676.
[23] KHOSHBAKHT, F., AND MOHAMMADNIA, M., 2012, Assessment of Clustering Methods for Predicting Permeability in a Heterogeneous Carbonate Reservoir, Journal of Petroleum Science and Technology, 2( 2), 50-57.
[24] KIANI, A., SABERI, M. H., ASADI, E., & RAHMANI, N., 2020, Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain. Iranian Journal of Petroleum Geology, 16(16), 78.
[25] MABROUK, I., 2021, Integrating XRD and Well Logging Data to Establish Electro-Facies and Permeability Models for an Unconventional Heterogeneous Tight Gas Reservoir, Obaiyed Giant Gas Field. In SPE Annual Technical Conference and Exhibition. OnePetro.
[26] MAHADASU, P., & SINGH, K. H., 2022, Electrofacies Estimation of Carbonate Reservoir in the Scotian Offshore Basin, Canada Using the Multi-resolution Graph-Based Clustering (MRGC) to Develop the Rock Property Models. Arabian Journal for Science and Engineering, 1-12.
[27] MALDAR, R., RANJBAR-KARAMI, R., BEHDAD, A., & BAGHERZADEH, S., 2022, Reservoir rock typing and electrofacies characterization by integrating petrophysical properties and core data in the Bangestan reservoir of the Gachsaran oilfield, the Zagros basin, Iran. Journal of Petroleum Science and Engineering, 210, 110080.
[28] MALEKZADEH, H., DARAEI, M., & BAYET-GOLL, A., 2020, Field-scale reservoir zonation of the Albian–Turonian Sarvak Formation within the regional-scale geologic framework: A case from the Dezful Embayment, SW Iran. Marine and Petroleum Geology, 121, 104586.
[29] MORADI, M., RAHIMPOUR-BONAB, H., KADKHODAIE, A., & CHEHRAZI, A., 2022, Analysis and distribution of Hydraulic flow unit and Electrofacies in the framework of sedimentary sequences in one of the gas fields in northeastern Iran. Journal of Petroleum Research, 32(123), 3-18.
[30] MEHDIPOUR, V., RABBANI, A. R., & KADKHODAIE, A., 2022, Porosity Modeling Using Simultaneously Seismic Attribute and Electrofacies Data in Sarvak Reservoir of an Iranian Oil Field. Journal of Petroleum Research, 32(1401-4), 113-128.
[31] MEHRABI, H., SOBHANI FOROSHANI, J., & RAHIMPOUR-BONAB, H., 2022, Controls of depositional and diagenetic processes on the distribution of reservoir rock types in carbonate reservoirs; a case from the Sarvak Formation in the Dezful Embayment. Kharazmi journal of earth sciences, 7(2), 0-0.
[32] MOHAJER, M. D., AFGHAH, M., DEHGHANIAN, M., & ZAKARIAII, S. J. S., 2022, Biozonation, microfacies analysis and depositional environment of the Cenomanian sediments (Sarvak Formation) in South Zagros Basin (SW Iran). Carbonates and Evaporites, 37(3), 40.
[33] MOHAMMED, A., DHAIDAN, M., AL-HAZAA, S. H., FAROUK, S., & AL-KAHTANY, K., 2022, Reservoir characterization of the upper Turonian–lower Coniacian Khasib formation, South Iraq: Implications from electrofacies analysis and a sequence stratigraphic framework. Journal of African Earth Sciences, 186, 104431.
[34] NAJAFI, M., & LAJMORAK, S.,2020, Contractional salt-tectonic system in the south Dezful embayment, Zagros. Journal of Structural Geology, 141, 104204.
[35] NOORI, H., MEHRABI, H., RAHIMPOUR-BONAB, H., & FAGHIH, A., 2019, Tectono-sedimentary controls on Lower Cretaceous carbonate platforms of the central Zagros, Iran: An example of rift-basin carbonate systems. Marine and Petroleum Geology, 110, 91-111.
[36] NOORIAN, Y., MOUSSAVI-HARAMI, R., MAHBOUBI, A., & ABDOLLAHI-MOUSSAVI, A. A., 2017, Evaluation of reservoir characterization in the framework of electro-facies: a case study from the Bangestan reservoir in the Mansuri oilfield, SW Iran. Geosciences Journal, 21(5), 713.
[37] PASH, R. R., SARKARINEJAD, K., GHOOCHANINEJAD, H. Z., MOTAMEDI, H., & YAZDANI, M., 2020, Accommodation of the different structural styles in the foreland fold-and-thrust belts: northern Dezful Embayment in the Zagros belt, Iran. International Journal of Earth Sciences, 109, 959-970.
[38] RASTEGARNIA, M., TALEBPOUR, M., SANATI, A., & HAJIABADI, S. H., 2017, Prediction of electrofacies based on flow units using NMR data and svm method: A case study in cheshmeh khush field, southern iran. Journal of Petroleum Science and Technology, 7(3), 84-99.
[39] SABOUHI, M., MOUSSAVI-HARAMI, R., KADKHODAIE, A., REZAEE, P., JALALI, M., & WOOD, D. A., 2023, Stratigraphic influences on reservoir heterogeneities of the Mid-Cretaceous carbonates in southwest Iran: Insight from an integrated stratigraphic, diagenetic and seismic attribute study. Journal of Asian Earth Sciences, 243, 105514.
[40] SFIDARI, E., AMINI, A., KADKHODAIE-ILKHCHI, A., CHEHRAZI, A., & ZAMANZADEH, S. M., 2019, Depositional facies, diagenetic overprints and sequence stratigraphy of the upper Surmeh reservoir (Arab Formation) of offshore Iran. Journal of African Earth Sciences, 149, 55-71.
[41] TABATABAEI, H., 2019, relationships between sedimentary environment via geochemistry and mineralogy in sarvak formation, zagros oil fields, sw of iran. Petroleum & Coal, 61(5).
[42]TOUSSAINT, R., AHARONOV, E., KOEHN, D., GRATIER, J. P., EBNER, M., BAUD, P., ... & RENARD, F., 2018, Stylolites: A review. Journal of Structural Geology, 114, 163-195.
[43] VAN DER VOET, E., MUCHEZ, P., LAENEN, B., WELTJE, G. J., LAGROU, D., & SWENNEN, R., 2020, Characterizing carbonate reservoir fracturing from borehole data–A case study of the Viséan in northern Belgium. Marine and Petroleum Geology, 111, 375-389.
[44] WANG, Z., TANG, H., YANG, J., & HUANG, L., 2022, Reservoir pore characteristics based on depositional microfacies control in the Neogene Guantao Formation, Bohai Bay Basin, China. Energies, 15(8), 2870.
[45] WU, H., WANG, C., FENG, Z., YUAN, Y., WANG, H. F., & XU, B. S., 2020, Adaptive multi-resolution graph-based clustering algorithm for electrofacies analysis. Applied Geophysics, 17, 13-25.
[46] ZADEH, P. G., ADABI, M. H., & SADEGHI, A., 2019, Microfacies, geochemistry and sequence stratigraphy of the Sarvak Formation (Mid Cretaceous) in the Kuh-e Siah and Kuh-e Mond, Fars area, southern Iran. Journal of African Earth Sciences, 160, 103634.