Photo-transformation of hydrogen sulfide environmental pollutant to hydrogen fuel using a carbon-based magnetic nanocomposite catalyst
Subject Areas : Chemical Engineering (Environmental Pollution)Majid Ghanimati 1 , Mohsen Lashgari 2 , Mahchehreh Sabeti 3
1 - Institute for Advanced Studies in Basic Sciences (IASBS)
2 - Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan
3 -
Keywords: H2S photo-degradation/transformation, Hydrogen production, Magnetic nanocomposite energy-material, Carbon nanotube, Hazardous material, Pollutant-to-fuel conversion, Semiconducting catalyst,
Abstract :
Hydrogen sulfide is a dangerous, corrosive and flammable environmental pollutant that is generated at large scale in sour oil and gas industries. One of the sustainable strategies to remove this environmental pollutant and convert it into hydrogen clean fuel is the use of a renewable energy source (photon) and synthesis of semiconducting nanoenergy materials. To this end, in the present project, a nanostructured magnetic semiconducting MgFe2O4 compound was synthesized and applied for the production of hydrogen fuel through photocatalytic splitting of an alkaline H2S solution. The empirical evidence revealed that the synthesized material has an appropriate potency to reduce proton and produce hydrogen. Furthermore, by the synthesis of CNT/MgFe2O4 magnetic nanocomposite, the boosting effect of carbon nanotube (CNT) on the activity of the aforementioned photocatalyst was examined. A significant promotion in hydrogen production was observed in the presence of CNT and justified in terms of increasing the photocatalyst surface area, retarding the electron-hole recombination process and enhancing the photon absorption. The rate of hydrogen evolution was 1284 µmole/h per 0.2 g photocatalyst, indicating that the synthesized nanocomposite material has a high ability to remove the pollutant and produce hydrogen fuel.
[1] K. V. Jangam, A. S. Joshi, Y. Y. Chen, S. Mahalingam, A. A. Sunny, L. S. Fan, “Synergistic decomposition of H2S into H2 by Ni3S2 over ZrO2 support via a sulfur looping scheme with CO2 enabled carrier regeneration” Chem. Eng. J., 2021, 426, 131815.
[2] T. Shi, H. Hou, S. Hussain, C. Ge, M. A. Alsaiari, A. S. Alkorbi, G. Liu, R. Alsaiari, G. Qiao, “Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures” Chemosphere, 2022, 287, 132178.
[3] B. Salah, A. I. Ayesh, “Fabrication of H2S sensitive gas sensors formed of SnO2–Fe2O3 composite nanoparticles” Materials Chemistry and Physics, 2021, 266, 124597.
[4] M. Lashgari, M. Ghanimati, “Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel” J. Hazard. Mater. 2018, 345, 10-17.
[5] M. Lashgari, M. Ghanimati, “A new efficient eco-friendly quaternary solid-solution nanoenergy material for photocatalytic hydrogen fuel production from H2S aqueous feed” Chem. Eng. J., 2019, 358, 153-159.
[6] M. A. Raja, V. Preethi, “Performance of square and trapezoidal photoreactors for solar hydrogen recovery from various industrial sulphide wastewater using CNT/Ce+3 doped TiO2” Int. J. Hydrog. Energy, 2019, 45, 7616-7626.
[7] M. Lashgari, M. Ghanimati, “An excellent heterojunction nanocomposite solar-energy material for photocatalytic transformation of hydrogen sulfide pollutant to hydrogen fuel and elemental sulfur: a mechanistic insight” J. Colloid Interface Sci., 2019, 555, 187-194.
[8] K. Vikrant, K. H. Kim, A. Deep, “Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation” Appl. Catal. B. 2019, 259, 118025.
[9] S. B. Khan, M. S. Javed Khan, K. Akhtar, E. M. Bakhsh, T. Kamal, A. M. Asiri, Y. Shen, “Design of efficient solar photocatalytic system for hydrogen production and degradation of environmental pollutant” J. Mater. Res. Technol., 2021, 14, 2497-2512.
[10] H. Yi, D. Huang, G. Zeng, C. Lai, L. Qin, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo, “Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production” Appl. Catal. B. 2018, 239, 408-424.
[11] M. Lashgari, M. Ghanimati, “Pollutant photo-conversion strategy to produce hydrogen green fuel and valuable sulfur element using H2S feed and nanostructured alloy photocatalysts: Ni-dopant effect, energy diagram and photo-electrochemical characterization” Chem. Eng. Res. Des., 2020, 162, 85-93.
[12] M. Kamali, S. Sheibani, A. Ataie, “Magnetic MgFe2O4–CaFe2O4 S-scheme photocatalyst prepared from recycling of electric arc furnace dust” J. Environ. Manage. 2021, 290, 112609.
[13] D. Wang, D. Han, Z. Shi, J. Wang, J. Yang, X. Li, H. Song, “Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications” Appl. Catal. B, 2018, 227, 61-69.
[14] M. J. Abel, V. Archana, A. Pramothkumar, N. Senthilkumar, K. Jothivenkatachalam, J. Joseph prince, “Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method” Phys. B: Condens. Matter, 2020, 601, 412349.
[15] X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, “A novel SnS2-MgFe2O4/reduced graphene oxide flower-like photocatalyst: Solvothermal synthesis, characterization and improved visible-light photocatalytic activity” Catal. Commun. 2015, 61, 62-66.
[16] L. Zhang, Y. He, Y. Wu, T. Wu, “Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials” Mater. Sci. Eng., B, 2011, 176, 1497-1504.
[17] N. Ain, W. Shaheen, B. Bashir, N. M. Abdelsalam, M. F. Warsi, M. AzharKhan, M. Shahid, “Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation” Ceram. Int., 2016, 42, 12401-12408.
[18] S. Bose, B. K. Tripathy, A. Debnath, M. Kumar, “Boosted sono-oxidative catalytic degradation of brilliant green dye by magnetic MgFe2O4 catalyst: degradation mechanism, assessment of bio-toxicity and cost analysis” Ultrasonics Sonochemistry, 2021, 75, 105592.
[19] S. Ku. Sahoo, G. Hota, “Surface functionalization of GO with MgO/MgFe2O4 binary oxides: A novel magnetic nanoadsorbent for removal of fluoride ions” J. Environ. Chem. Eng. 2018, 6, 2918-2931.
[20] R. C. Sripriya, M. Mahendiran, J. Madahavan, M. V. Antony Raj, “Enhanced magnetic properties of MgFe2O4 nanoparticles” Mater. Today: Proc., 2019, 8, 310-314.
[21] G. Vaish, R. Kripal, L. Kumar, “Comprehensive study of magnetic and optoelectronic properties of MgFe2O4-TiO2 nanocomposites” Mater. Chem. Phys., 2021, 271, 124911.
[22] J. A. Rodriguez, A. Maiti, “Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: A first-principles density functional study” J. Phys. Chem. B, 2000, 104, 3630-3638.
[23] T. Yamamoto, M. Tayakout-Fayolle, C. Geantet, “Gas-phase removal of hydrogen sulfide using iron oxyhydroxide at low temperature: Measurement of breakthrough curve and modeling of sulfidation mechanism” Chem. Eng. J., 2015, 262, 702-709.
[24] W. Fan, M. Li, H. Y. Bai, D. Xu, C. Chen, C. Li, Y. Ge, W. Shi, “Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis” Langmuir, 2016, 32, 1629-1636.
[25] J. Jia, X. Du, Q. Zhang, E. Liu, J. Fan, “Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal” Appl. Surf. Sci., 2015, 492, 527-539.
[26] J. Zhou, S. Cheng, Y. Jiang, F. Zheng, X. Ou, L. Yang, M. Wang, M. Yao, M. Liu, “Fabrication of TiO2 coated porous CoMn2O4 submicrospheres for advanced lithium-ion anodes” RSC Adv., 2017, 7, 21214-21220.
[27] M. Lashgari, P. Elyas-Haghighia, M. Takeguchi, “A highly efficient p-n junction nanocomposite solar-energy-material [nano-photovoltaic] for direct conversion of water molecules to hydrogen solar fuel” Sol. Energy Mater. Sol. Cells, 2017, 165, 9-16.
[28] Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, “Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite” RSC Adv., 2015, 5, 92778-92787.
[29] D. Ghanbari, M. Salavati-Niasari, “Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite” Korean J. Chem. Eng, 2015, 32, 903-910.
[30] S. Ilhan, S. G. Izotova, A. A. Komlev, “Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides” 2014, 41, 577-585.
[31] A. Chatterjee, S. Wing, “Metal-organic framework-derived MnO/CoMn2O4@N-C nanorods with nanoparticle interstitial decoration in core shell structure as improved bifunctional electrocatalytic cathodes for Li-O2 batteries” Electrochim. Acta, 2020, 338, 135809.
[32] M. Lashgari, S. Soodi, “CO2 conversion into methanol under ambient conditions using efficient nanocomposite photocatalyst/solar-energy materials in aqueous medium” RSC Adv., 2020, 10, 15072-15078.
[33] M. Lashgari, P. Zeinalkhani, “Ammonia photosynthesis under ambient conditions using an efficient nanostructured FeS2/CNT solar-energy-material with water feedstock and nitrogen gas” Nano Energy, 2018, 48, 361-368.
[34] S. El Shabrawy, C. Bocker, C. Russel, “Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3” Solid State Sci., 2016, 60, 85-91.
[35] M. Lashgari, M. Ghanimati, “A highly efficient nanostructured quinary photocatalyst for hydrogen production” Int. J. Energy Res., 2015, 39, 516-524.
[36] L. Wang, H. Yang, J. Yang, Y. Yang, R. Wang, S. Li, H. Wang, S. Ji, “The effect of the internal magnetism of ferromagnetic catalysts on their catalytic activity toward oxygen reduction reaction under an external magnetic field” Ionics, 2016, 10.1007/s11581-016-1746-6
[37] R. Sepahvand, R. Mohamadzade, “Synthesis and characterization of carbon nanotubes decorated with magnesium ferrite (MgFe2O4) nanoparticles by citrate-gel method” J. Sci. I. R. Iran, 2011, 22, 177-182.
[38] N. Kaur, M. Kaur, “Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites” Ceram. Int., 2018, 44, 4158-4168.
[39] K. Shetty, S. V. Lokesh, D. Rangappa, H. P. Nagaswarupa, H. Nagabhushana, K. S. Anantharaju, S. C. Prashantha, Y. S. Vidya, S. C. Sharma, “Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property” Phys. B: Condens. Matter, 2017, 507, 67-75.
[40] G. Vaish, R. Kripal, L. Kumar, “EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite” J. Mater. Sci.: Mater. Electron., 2019, 30, 16518-16526.