Enhancing volume and salinity of production water in oil and gas wells, Case study: Mozduran gas reservoir
Subject Areas :rahim Bagheri 1 , Mehdi Miri 2 , Farshid khabiri 3 , Mohhamadreza Akhlaghi 4
1 -
2 -
3 -
4 -
Keywords: Map produced water Brine Salinity origin Mozduran gas reservoir ,
Abstract :
The production of oil and gas in oil and gas fields is accompanied by production of water (Produced Water). Most of the reservoirs at the beginning of production have fresh water; but with passing time due to the increase in productions and decrease in pressure of reservoir, the produced water gradually becomes saline. The saline Production water causes severe corrosion in pipelines and well head facilitis leading to reduction in gas production. Determining the origin of salinity for reducing the salinity is most important. Khangiran gas field is located in the northeast of Iran which composed of two separate gas formations, Mozduran at lower and Shurijeh at the upper part. The produced water samples were collected from fresh and salty wells in the Mozduran reservoir as well as two deep samples from brine below the gas reservoir (at depth of 3 km) for comparison and different analyzes. The Mozduran reservoir has two major problems, high salinity of the produced water, as well as the volume of water produced, rendering some wells unexploitable. The results revealed that two deep water samples have different behaviors. The deep sample No. 17, taken at a higher elevation than sample No. 13, showed the signs of salt dissolution; whereas the brine from sample no.13 had the origin of the evaporated old sea water. Therefore, any of these brines in the Khangiran reservoir can be the possible source of salinity in produced waters. The saline produced water samples showed a similar behavior to brine sample no.13. The source of fresh produced water is also the condensation of water vapor in the reservoir during production.
[1] باقري، ر.، 1394،"چالش جديد شرکت ملي نفت: شوري آبهاي توليدي"، کنفرانس ملي ژئومکانيک نفت، تهران 9 ص.#
[2] باقري، ر.؛ ندري آ.؛ رئيسي، ع.، (1394)، " خصوصيات هيدروشيميايي ايزوتوپي آبهاي فسيلي ذاتي و عهد حاضر" سي دومين گردهمايي علوم زمين، شيراز، ايران. 10 ص.#
[3] راهرو، م.، باقري ر.، ميرباقري م.، (1395)، "منشا شوري آب هاي توليدي مخزن گازي شانول، جنوب ايران، روش هيدروشيميايي و ايزوتوپي"، کنفرانس ملي ژئومکانيک نفت، تهران 10 ص.#
[4] راهرو، م.، باقري ر.، ميرباقري، م.، (1395)، "مطالعه و بررسي تکامل ژئوشيميايي شورابه هاي توليدي مخزن گازي شانول"، کنفرانس ملي ژئومکانيک نفت، تهران 10ص . #
[5] قربان پور، ح.، (1393)، "بررسي سنگ شناسي و پتانسيل مخزني بخش مخزن ماسه سنگي زون1-1 سازند مزدوران در ميدان گازي خانگيران"، کنفرانس ملي زمين شناسي و اکتشاف منابع، تهران 8 ص.#
[6] شرکت نفت کاو، (1389)، "کليات زمين شناسي ميادين خانگيران و گنبدلي "194ص.3
[7] ميري، م.؛ باقري، ر.؛ طاهري، ع.؛ خيبري، ف.؛ (1396)،" منشا آبهاي ذاتي در سفره عميق تحت فشار مخزن گازي مزدوران، شمال شرق ايران "، سي ششمين گردهمايي علوم زمين، تهران، ايران. 8 ص .#
[8] AFSHAR-HARB, A. (1979). The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, Northern Iran, Unpublished PhD thesis, Imperial College of Science and Technology, London. 316 pp.#
[9] BAGHERI, R., NADRI, A., RAEISI, E., SHARIATI, A., MIRBAGHERI, M., & BAHADORI, F. (2014). Chemical evolution of gas-capped deep aquifer, Southwest of Iran. Environmental earth Sciences, 71(7):3171-3180. #
[10] BAGHERI, R., NADRI, A., RAEISI, E. EGGENKAMP, H.G.M., KAZEMI, G.A., & MONTASERI A. (2014). Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir, Chemical Geology. 384:62–75.#
[11] BAGHERI, R., NADRI, A., RAEISI, E., SHARIATI, A., MIRBAGHERI, M., & BAHADORI, F. (2014). Chemical evolution of gas-capped deep aquifer, Southwest of Iran. Environmental earth Sciences, 71(7):3171-3180.#
[12] BIRKLE, P., ARAGON, J.R., PORTUGAL, E., & AGUILAR, J.F. (2002). Evolution and origin of deep reservoir water at the active Luna oil field, Gulf of Mexico, AAPG bulletin, 86(3):457-484. #
[13] BIRKLE, P., GARCIA, B.M., & PARDON, C.M.M. (2009). Origin and evolution of formation water at jujo Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction. Applied Geochemistry, 24(4):543-554.#
[14] CARPENTER, A.B., (1987). Origin and Chemical evolution of brines in sedimentary basins. In SPE annual Fall Technical Conference and Exhibition. Society of Petroleum Engineers. #
[15] CARPENTER, A.B., Trout, M.L., & Pickett, E.E. (1974). Preliminary report on the origin and chemical evolution of lead and zonc rich oil field brines in central Mississippi. Economic Geology, 69(8):1191-1206. #
[16] FONTES, J.Ch., MATRAY, J.M. (1993). Geochemistry and origin of formation brines from the Paris Basin, France, 1. Brines associated with Triassic salts. Chemical Geology, (109):149–175.#
[17] HOLSER, W.T., (1979). Trace elements and isotopes in evaporites. In: Burns RG (ed) Reviews in mineralogy, marine minerals. Mineral Society of America, Washington DC, 295–346.#
[18] KHARAKA, Y.K, HANOR, J.S. (2004). Deep fluids in the continents: I. Sedimentary basins. In: Drever JI (ed) Treatise in Geochemistry, vol 5 Holland HD, Turekian KK (Exec. Eds.), Elsevier, New York, 499–540.#
[19] KHARAKA, Y.K., THORDSEN, J.J. (1992). Stable isotope geochemistry and origin of water in sedimentary basins. In: Clauer N, Chaudhuri S (eds) Isotope signatures and sedimentary records. Springer, Berlin, 411–466.#
[20] KHARAKA, Y.K., BERRY, F.A. (1973). Simultaneous flow of water and solutes through geological membranes. Experimental investigation. Geochimica et cosmochimica Acta, 37(12):2577-2603. #
[21] KHARAKA, Y.K., COL BE, D.R., HOVORKA, S.D., GUNTER, W.D., KNAUSS, K.G., & FREFIELD, B.M. (2006). Gas-Water-Rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology, 34(7):577-580. #
[22] MAC CAFFREY, M.A., LAZAR, B., & HOLLAND, H.D. (1987). The evaporation path of seawater and the coprecipitation of Br- and K with halite. J. Sed. Petrol., (57):928–937.#
[23] RITTENHOUSE, G., (1967). Bromine in oil-filed waters and its use in determining possibilities of origin of these waters. AAPG Bulletin 51 (12), 2430-2440.#
[24] ROBERT, A., LETOUZEY, J., KAVOOSI, M.A., SHERKATI, S., MULLER, C., VERGAS, J., & AGHABABAEI, A. (2014). Structural evolution of Kopeh Dagh fold-and-thrust belt and interactions with the South Caspian Sea Basin and Amu Darya Basin. Journal of Marine and Petroleum Geology, 32.#
[25] SANDERS, L.L., (1991). Geochemistry of formation waters from the lower Silurian Clinton Formation (Albion Sandstone), Eastern Ohio (1) AAPG Bulletin, 75(10):1593-1608. #
[26] SHOUAKAR-STASH, O., ALEXEEV, S.V., FRAPE, S.K., ALEXEEVA, L.P., & DRIMMIE, R.J. (2007). Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes of the deep groundwaters of the Siberian Platform, Russia. Applied geochemistry, 22(3):589-605. #
[27] WALTER, L.M, STUBER, A.M., & HUSTON, T.J. (1990). Br-Cl-Na Systematics in Illinois basin fluids: Constraints on fluid origin and evolution. Geology, 18(4):315-318.#
[28] WHITE, D.E., (1957). Magmatic, connate, and metamorphic waters. Geological Society of America Bulletin, 68 (12):1659-1682.#
[29] WORDEN, R., MANNING, D.A.S., & BOTTRELL, S.H. (2005). Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK. Applied Geochemistry, 455-475.3.3