Application of Kuster and Toksoz equations in inverse modeling technique to estimate the percentages of pore types in carbonate rocks
Subject Areas :اصغر نادری 1 , مصطفی حیدری 2 , ایرج مداحی 3 , ناصر کشاورز فرج خواه 4
1 -
2 -
3 -
4 -
Keywords: seismic velocity porosity pore type and pore shape ,
Abstract :
The most prominent parameter of seismic studies is seismic wave velocity. This parameter is influenced by different factors such as rock properties (Compaction, age, Lithology, Porosity, Pore Shape and etc), fluid properties (Viscosity, Density, fluid type, Saturation) and environment (Stress history, Depositional environment, production history, temperature, pressure, etc). Therefore, by identification, study and investigation of the relationship between seismic velocity and these parameters, properties of rock, fluid and environment from seismic data can be inferred. The main factors affecting these parameters are the porosity and pore ambiences. Many studies have been conducted to obtain and understand these relations. Most of the theoretical equations haven’t considered changes in seismic properties from pores. Therefore, the seismic inversion, AVO and pore volume calculated based on these equations, include much uncertainties. One of the equations that consider several factors such as porosity, pore type, mineralogy and pore fluid is provided by Kuster and Toksoz. In this study, using this equation and inverse modeling technique, geometry and pore type and percentage of any type of pore shape in 3 wells penetrated one Irainain hydrocarbon reservoir were estimated. In this reservoir, Spherical and Disk shape have the highest percentage.