Use of Plasma Cavitation Reactor in condensation of sanitary sewage treatment Plant at IKCO Company
Subject Areas : Pollution of water resourcesLeili Masoumi ghaleh 1 , Ali Sayadi malakami 2 , Amir Emami 3 , Naeemeh Shirakbari 4 , Javad Modabber 5 , Majid Javadyan sarcheshme 6
1 - supervisor
2 - IKCO Expert
3 - IKCO Expert
4 - IKCO Expert
5 - Head of IKCO Energy
6 - IKCO Expert
Keywords: Plasma Cavitation Reactor, condensation of sanitary sewage, water treatment, centrifuge,
Abstract :
In order to condensing the sanitary sludge, two types of complementary centrifugal and screw press devices are usually used. In this paper, in order to increase the efficiency and maximum dewatering in the final stage of the treatment plant, plasma cavitation reactor was used. The input sample of the studied system is the output sludge of the sanitary wastewater treatment plant process of IKCO after entering the digestion tank and staying for one hour. Using a plasma cavitation reactor by rectifier, a voltage of 50 volts and a current of 110 amps was applied to 5 iron electrodes in the cavitation reactor tank with a volume of 1 m3 and the sample was tested for 8 days and every day for 8 hours. Then, the effect of the presence of cavitation reactor on the percentage of dry matter is compared with the centrifuge and multi-disc screw press system when they used alone. Based on industrial and laboratory results, a decrease of more than 80% of wet sludge (conversion of 100 m3 of sludge to about 20 m3 daily) was observed daily. Also, the COD of the outlet water from the final cavitation tank was less than 200 mg/L, also, the amount of its turbidity reached below 50 NTU after passing through sand filters in the final stages which can be used for irrigation and agriculture. Using plasma cavitation reactor was effective in reducing settling time and the final volume of wet sludge.
كاظم گوديني، زينب معصومي، قاسم آذربان، زهرا عطافر، امير باقي، (1393). "بررسي آبگيري لجن فعال فاضلاب شهري با استفاده از فرآيند الكتروفلوتاسيون: بهينه سازي پارامترهاي بهرهبرداري و مصرف انرژي"، مجله علمي دانشگاه علوم پزشكي و خدمات بهداشتي درماني همدان، دوره بيست ويكم، شماره 4، شماره مسلسل74
عليرضا رحماني، سمانه شانه ساز، کاظم گودینی، قاسم آذریان، (1394). "کارايي فرآيند الکترواکسيداسيون در تصفيه فاضلاب کارخانه هاي کشمش پاک کنی شهرستان ملایر"، مجله علمي پژوهان، دوره 14، شماره 1، صفحات 3 تا 30
مقداد پیرصاحب، عبداله درگاهی، هانیه باصری نیا، امیرحسام حسنی، (1392). "بررسی کارایی واحدهای تغلیظ، هضم هوازی و آبگیری در تصفیه لجن تصفیهخانه فاضلاب شهرک قدس تهران"، شانزدهمین همایش ملی بهداشت محیط ایران، تبريز، https://civilica.com/doc/237564
محسن سعيدي، امين خلوتي فهلياني، (1389)، "كاهش COD پساب خروجي پالايشگاه گازي پارس جنوبي به روش انعقاد الكتريكي" مجله آب و فاضلاب، سال 1، 1389 ، صفحات 40-48
محسن اربابي، محمد علی احمدی، مرتضی سدهی، (1393)، " بهينه سازي حذف COD و رنگ حاصل از فاضلاب خمير مايه با استفاده از اكسيداسيون فنتون" مجله سلامت و محيط، فصلنامه ي علمي پژوهشي انجمن علمي بهداشت محيط ايران، دوره هفتم، شماره سوم، صفحات 375 تا 384
An, C., Huang, G., Yao, Y., & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of the Total Environment, 579, 537-556.
Abbas, S. H., & Ali, W. H. Electrocoagulation Technique Used To Treat Wastewater: A.
Barrera-Díaz, C. E., Balderas-Hernández, P., & Bilyeu, B. (2018). Electrocoagulation: Fundamentals and prospectives. In Electrochemical water and wastewater treatment (pp. 61-76). Butterworth-Heinemann.
Chakchouk, I., Elloumi, N., Belaid, C., Mseddi, S., Chaari, L., & Kallel, M. (2017). A combined electrocoagulation-electrooxidation treatment for dairy wastewater. Brazilian journal of chemical engineering, 34, 109-117.
Chaturvedi, S. I. (2013). Electrocoagulation: a novel waste water treatment method. International journal of modern engineering research, 3(1), 93-100.
Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Klemenčič, A. K., ... & Kompare, B. (2016). Use of hydrodynamic cavitation in (waste) water treatment. Ultrasonics sonochemistry, 29, 577-588.
Espinoza-Cisternas, C., & Salazar, R. (2018). Application of electrochemical processes for treating effluents from landfill leachate as well as the agro and food industries. In Electrochemical Water and Wastewater Treatment (pp. 393-419). Butterworth-Heinemann.
Fanun, M. (Ed.). (2014). The role of colloidal systems in environmental protection. Elsevier.
Standard Methods For The Examination Of Water And Waste Water, 2005, 2540 B
Hendricks, D. (2016). Fundamentals of water treatment unit processes: physical, chemical, and biological. Crc Press.
Jing, G., Ren, S., Pooley, S., Sun, W., Kowalczuk, P. B., & Gao, Z. (2021). Electrocoagulation for industrial wastewater treatment: an updated review. Environmental Science: Water Research & Technology, 7(7), 1177-1196.
Koparal, A. S., & Öğütveren, Ü. B. (2002). Removal of nitrate from water by electroreduction and electrocoagulation. Journal of hazardous materials, 89(1), 83-94.
Kumar, P. R., Chaudhari, S., Khilar, K. C., & Mahajan, S. P. (2004). Removal of arsenic from water by electrocoagulation. Chemosphere, 55(9), 1245-1252.
Kumar, A. N., Bandarapu, A. K., & Mohan, S. V. (2019). Microbial electro-hydrolysis of sewage sludge for acidogenic production of biohydrogen and volatile fatty acids along with struvite. Chemical Engineering Journal, 374, 1264-1274.
Kumar, A. N., Bandarapu, A. K., & Mohan, S. V. (2019). Microbial electro-hydrolysis of sewage sludge for acidogenic production of biohydrogen and volatile fatty acids along with struvite. Chemical Engineering Journal, 374, 1264-1274.
Linares Hernández, I., Barrera Díaz, C., Valdes Cerecero, M., Almazan Sanchez, P. T., Castaneda Juarez, M., & Lugo Lugo, V. (2017). Soft drink wastewater treatment by electrocoagulation–electrooxidation processes. Environmental technology, 38(4), 433-442.
Priya, M., & Jeyanthi, J. (2019). Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique. Microchemical Journal, 150, 104070.
Wang, L., Yang, C., Thangavel, S., Guo, Z., Chen, C., Wang, A., & Liu, W. (2021). Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge. Frontiers of Environmental Science & Engineering, 15(4), 1-10.
Zeman, F. (Ed.). (2012). Metropolitan sustainability: Understanding and improving the urban environment. Elsevier.