Determination of Available Transfer Capability by Combined Method of Newton-Raphson-Seydel and Holomorphic Load Flow with Improved Matrix Calculations
Subject Areas : electrical and computer engineering
1 - Khorasan Institute of Higher Education
Keywords: Available transfer capability, holomorphic load flow, Newton-Raphson-Seydel, HVDC line,
Abstract :
This paper first demonstrates that high direct current lines will undoubtedly be the backbone of the future transmission network. The Newton Raphson Seydel alternating load flow equations are then combined with the direct current line equations. This paper employed matrix techniques to increase the speed of solving problems as the dimensions of the equations get larger. Furthermore, the holomorphic load flow does not require an initial estimate to run the load flow, and if a solution exists, the precise answer is calculated. The initial guess of Newton Raphson Seydel was calculated using this approach. In this paper, we describe a novel approach that can compute the available transfer capability in small and large networks with sufficient accuracy and speed by combining these methods. The simulation in this paper uses five networks: 39 IEEE buses, 118 IEEE buses, 300 IEEE buses, 145 Iowa state buses, and 1153 East Iran buses network. In addition, four approaches were employed for comparison: continuous power flow, the general minimum residual method, Newton Raphson Seydel classical method, and the standard holomorphic power flow method. The results of the simulations suggest that the proposed strategy is acceptable.
[1] M. Champion, "The Future of Power Is Transcontinental, Submarine Supergrids," Bloomberg Businessweek, https://www.bloomberg.com/news/features/2021-06-09/future-of-world-energy-lies-in-uhvdc-transmission-lines, Jun. 2021.
[2] S. Lumbreras, H. Abdi, and A. Ramos, Transmission Expansion Planning: The Network Challenges of the Energy Transition, Springer Nature Switzerland AG, 2021.
[3] G. D. A. Tinajero, M. Nasir, J. C. Vasquez, and J. M. Guerrero, "Comprehensive power flow modelling of hierarchically controlled AC/DC hybrid islanded microgrids," International J. of Electrical Power and Energy Systems, vol. 127, Article ID: 106629, 9 pp., May 2021.
[4] H. Zhang and S. Wang, "A distributed dynamic power flow algorithm for an interconnected system containing two-terminal LCC-HVDC tie-line," IEEE Access, vol. 9, pp. 28673-28683, 2021.
[5] W. Sicheng and G. Shan, "Available transfer capability analysis method of AC-DC power system based on security region," J. of Engineering IET, vol. 2019, no. 16, pp. 2386-2390, Mar. 2019.
[6] م. عیدیانی، "یافتههای گذشته و مسیرهای آینده روشهای تعیین قابلیت انتقال توان در دسترس، بخش اول، مفاهیم و روشهای ایستا،" فصلنامه عصر برق، انجمن برق و الکترونیک ایران، شاخه خراسان، شماره 15، صص. 49-41، تابستان 1400.
[7] م. عیدیانی، "یافتههای گذشته و مسیرهای آینده روشهای تعیین قابلیت انتقال توان در دسترس، بخش دوم، روشهای پویا،" فصلنامه عصر برقانجمن برق و الکترونیک ایران، شاخه خراسان، شماره 16، صص. 42-35، زمستان 1400.
[8] O. O. Mohammed, M. W. Mustafa, D. S. S. Mohammed, and A. O. Otuoze, "Available transfer capability calculation methods: a comprehensive review," Int. Trans. on Electrical Energy Syst., vol. 29, no. 6, Article ID: e 2846, 24 pp., Jun. 2019.
[9] م. عیدیانی، "تعیین پایداری ولتاژ و ATC ایستا با روش نیوتن- رافسون- سایدل توسعهیافته و مقایسه آن با روش حداقل پسماند،" مجله فنی و مهندسی دانشگاه آزاد اسلامی مشهد، جلد 3، شماره 1، صص. 10-1، زمستان 1388.
[10] M. Eidiani, "A reliable and efficient method for assessing voltage stability in transmission and distribution networks," International J. of Electrical Power and Energy System, vol. 33, no. 3, pp. 453-456, Mar. 2011.
[11] I. S. V. Agnes, R. Narmathabanu, D. Devaraj, and M. Karuppasamypandiyan, "Estimation of dynamic ATC including Hopf bifurcation limit using step by step algorithm," Int. J. of Power and Energy Conversion, vol. 8, no. 2, pp. 365-369, Jan. 2017.
[12] I. S. V. Agnes, D. Devaraj, R. B. Namatha, and M. K. Pandiyan, "Differential evolution algorithm for computation of dynamic ATC in deregulated power system," in Proc. Int. Conf. on Intelligent Techniques in Control, Optimization and Signal Processing, 10 pp., Srivilliputtur, India, 23-25 Mar. 2017.
[13] S. Sayah and A. Hamouda, "Optimal power flow solution of integrated AC‐DC power system using enhanced differential evolution algorithm," Int. Trans. on Electrical Energy Syst., vol. 29, no. 2, Article ID: e2737, 11 pp., Feb. 2018.
[14] S. Devesh and S. P. Singh, "Real-time estimation of ATC using PMU data and ANN," IET Gener. Transm. Distrib., vol. 14, no. 17, pp. 3604-3616, Sept. 2020.
[15] D. Gupta and S. K. Jain, "Available transfer capability enhancement by FACTS devices using metaheuristic evolutionary particle swarm optimization (MEEPSO) technique," Energies, vol. 14, no. 4, Article ID: 869, 28 pp., 2021.
[16] T. L. Duong, T. T. Nguyen, N. A. Nguyen, and T. Kang, "Available transfer capability determination for the electricity market using cuckoo search algorithm," Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5340-5345, Feb. 2020.
[17] M. Eidiani, "Transient stability constrained available transmission capability (ATC)," J. of Electrical Engineering, Faculty of Electrical and Power Engineering, vol. 10, no. 3, pp. 48-54, 2010.
[18] M. Eidiani and M. H. M. Shanechi, "FAD‐ATC: a new method for computing dynamic ATC," International. J. of Electrical Power and Energy Sysems, vol. 28, no. 2, pp. 109‐118, Feb. 2006.
[19] A. Velusamy, N. B. Ramu, D. Durairaj, and K. Murugesan, "Differential evolutionary algorithm based optimal support vector machine for online DATC estimation incorporating transmission capacity margins," Int. Trans. on Electrical Energy Syst., vol. 27, no. 7, Article ID: e2331, 12 pp., Jul. 2017.
[20] M. Shaaban, "Behavior of power system equilibrium points in dynamic available transfer capability calculation," J. of Applied Science & Process Engineering, vol. 5, no. 1, pp. 242-248, 2018.
[21] W. Xiaoting, W. Xiaozhe, S. Hao, and L. Xi, "A data-driven sparse polynomial chaos expansion method to assess probabilistic total transfer capability for power systems with renewable," IEEE Trans. on Power Syst., vol. 36, no. 3, pp. 2573-2583, May 2020.
[22] S. Xin, T. Zhongbei, R. Yufei, L. Zhaohui, and T. Pietro, "Probabilistic available transfer capability assessment in power systems with wind power integration," IET Renew. Power Gener., vol. 14, no. 11, pp. 1912-1920, Aug. 2020.
[23] D. Hur, J. K. Park, B. H. Kim, and K. M. Son, "Security constrained optimal power flow for the evaluation of transmission capability on Korea electric power system," inProc. Power Engineering Society Summer Meeting, pp. 1133‐1138, Vancouver, Canada, 15-19 Jul. 2001.
[24] Y. Liu, et al., "Online TTC estimation using nonparametric analytics considering wind power integration," IEEE Trans. Power Syst., vol. 34, no. 1, pp. 494-505, Jan. 2019.
[25] M. Kim, D. Hur, Y. Nam, and J. Park, "Total transfer capability computation using small signal stability‐based security constrained optimal power flow," European Trans. on Electrical Power, vol. 21, no. 1, pp. 877‐894, Jan. 2011.
[26] Q. Gao, et al., "Surrogate-assisted optimal redispatch control for risk-aware regulation of dynamic total transfer capability," IET Gener. Transm. Distrib., vol. 15, no. 13, pp. 1949-1961, Jul. 2021.
[27] S. Kesherwani, A. Mohapatra, and S. C. Srivastav, "An efficient holomorphic embedded based approach for available transfer capability evaluation," Int. Electrical Power and Energy Syst., vol. 122, Article ID: 106164, 10 pp., Nov. 2020.
[28] M. Eidiani, "A reliable and efficient holomorphic approach to evaluate dynamic available transfer capability," International Trans. on Electrical Energy Systems, vol. 31, no. 11, Article ID: e13031, 14 pp., Nov. 2021.
[29] Y. Liu and K. Sun, "Solving power system differential algebraic equations using differential transformation," IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2289-2299, May 2021.
[30] Y. Liu and K. Sun, Differential Transformation of Nonlinear Power Flow Equations, arXiv preprint arXiv:2004.08017, 5 pp., 2020.
[31] Y. Liu, K. Sun, and J. Dong, "A dynamized power flow method based on differential transformation," IEEE Access, vol. 8, pp. 182441-182450, 2020.
[32] M. Eidiani, "A new method of static available transfer capability computation in a high-penetration wind farm," Majlesi J. of Mechatronic Systems, vol. 10, no. 2, pp. 29-38, Jun. 2021.
[33] M. Eidiani, "An efficient differential equation load flow method to assess dynamic available transfer capability with wind farms," IET Renewable Power Generation, vol. 15, no. 16, pp. 1-13, 7 Dec. 2021.
[34] M. Eidiani, "A new hybrid method to assess available transfer capability in AC-DC networks using the wind power plant interconnection," IEEE Systems J., vol. 17, no. 1, pp. 1375 - 1382, Mar. 2022.
[35] O. Olobaniyi, O. Oparinde, and N. Ogundipe, "A comparative study of iterative and non-iterative load-flow methods: a case of newton raphson and holomorphic embedding approaches," Nigerian J. of Engineering, vol. 29, no. 1, pp. 64-71, Apr. 2022.
[36] M. Shamseldein, "A fast holomorphic embedding power flow approach for meshed distribution networks," International Trans. on Electrical Energy Systems, vol. 2022, Article ID: 9561385, 11 pp., 2022.
[37] M. Y. Morgan, M. F. Shaaban, H. F. Sindi, and H. H. Zeineldin, "A holomorphic embedding power flow algorithm for islanded hybrid AC/DC microgrids," IEEE Trans. on Smart Grid, vol. 13, no. 3, pp. 1813-1825, May 2022.
[38] https://www2.kios.ucy.ac.cy/testsystems/