Stochastic Planning of Resilience Enhancement for Electric Power Distribution Systems against Extreme Dust Storms
Subject Areas : electrical and computer engineeringM. Haghshenas 1 , R. Hooshmand 2 , M. Gholipour 3
1 - UNIVERSITY OF ISFAHAN
2 -
3 -
Keywords: Power distribution system resilience, blackout, insulation failure, extreme dust storms, network reconfiguration, emergency generators,
Abstract :
Resilience in power systems refers to the system's ability to withstand severe disturbances with a low probability of occurrence. Because in recent years extreme dust storms have caused severe damage to Iran's electricity industry, especially in the south and southwest, in this paper proposed a new scenario-based stochastic planning model for enhancement of power distribution systems resilience against extreme dust storms. In proposed model, in the first stage, the investment costs to improve the distribution system resilience against extreme dust storms are minimized due to the financial constraints, and in the second stage, the expected operating costs in dust storm conditions are minimized due to the operating constraints. Because network's insulation equipment are major cause of distribution system vulnerabilities in the dust storms, measures in the planning stage include replacement of porcelain insulators with silicon-rubber type, installation of automatic tie switches and installation of emergency generators. In the second stage, the measures are divided into preventive actions and corrective actions, and coordination between stages 1 and 2 is implemented in such a way that the results of each stage depend on the decision variables of the other stage. The simulation results for IEEE 33-bus test system and a 209 bus radial distribution network located in Khuzestan province, Iran, confirm the efficiency of the proposed model in different financial conditions.
[1] A. Gholami, F. Aminifar, and M. Shahidehpour, "Front lines against the darkness: enhancing the resilience of the electricity grid through microgrid facilities," IEEE Electrification Magazine, vol. 4, no. 1, pp. 18-24, Mar. 2016.
[2] NERC, "Hurricane sandy event analysis report," Jan. 2014.
[3] کمیسیون انرژی مجلس شورای اسلامی، گزارش بحران قطعیهای آب، برق و مخابرات در بهمنماه 1395 استان خوزستان، شماره 99896، اسفند 1395.
[4] ف. امینی¬فر و م. فرهومندی، ” مفاهيم و مباني ارزيابي تاب¬آوری¬ در شبکه¬های برق،“ مجله انجمن مهندسي برق و الکترونيک ايران، سال 15، شماره 3، صص. 91-83، پاییز 1397.
[5] N. M. Tabatabaie, S. Najafi, and N. Bizon, "Power systems resilience: modeling, analysis and practice," Springer, 2019.
[6] M. Mahzarnia, M. P. Moghaddam, P. Teimourzadeh, and P. Siano, "A review of the measures to enhance power systems resilience," IEEE Systems J., vol. 14, no. 3, pp. 4059-4070, Sept. 2020.
[7] A. Arab, A. Khodaei, S. K. Khator, K. Ding, V. A. Emesih, and Z. Han, "Stochastic pre-hurricane restoration planning for electric power systems infrastructure," IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 1046-1054, Mar. 2015.
[8] A. Arif, Z. Wang, J. Wang, and C. Chen, "Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch," IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4109-4118, Sep. 2017.
[9] X. Wu and A. J. Conejo, "An efficient tri-level optimization model for electric grid defense planning," IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2984-2994, Jul. 2016.
[10] X. Wang, Z. Li, M. Shahidehpour, and C. Jiang, "Robust line hardening strategies for improving the resilience of distribution systems with variable renewable resources," IEEE Trans. Sustain. Energy, vol. 10, no. 1, pp. 386-395, Jan. 2017.
[11] Y. Lin and Z. Bie, "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Appl. Energy, vol. 210, pp. 1266-1279, Jan. 2018.
[12] W. Yuan, et al., "Robust optimization-based resilient distribution network planning against natural disasters," IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2817-2826, Nov. 2016.
[13] G. Huang, J. Wang, C. Chen, J. Qi, and C. Guo, "Integration of preventive and emergency responses for power grid resilience enhancement," IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4451-4463, Nov. 2017.
[14] E. Yamangil, R. Bent, and S. Backhaus, "Resilient upgrade of electrical distribution grids," in Proc. 29th Conf. on Artificial Intelligence, pp. 1233-1240, Austin, TX, USA, 25-30 Jan. 2015.
[15] Q. Shi, F. Li, et al., "Post-extreme-event restoration using linear topological constraints and DER scheduling to enhance distribution system resilience," International J. of Electrical Power & Energy Systems, vol. 131, Article ID: 107029, 9 pp., Oct. 2021.
[16] B. Taheri, A. Safdarian, M. Moeini-Aghtaie, and M. Lehtonen, "Distribution system resilience enhancement via mobile emergency generators," IEEE Trans. Power Deliv., vol. 36, no. 4, pp. 2308-2319, Aug. 2021.
[17] J. Najafi, A. Peiravi, A. Anvari-Moghaddam, and J. M. Guerrero, "Resilience improvement planning of power-water distribution systems with multiple microgrids against hurricanes using clean strategies," J. of Cleaner Production, vol. 223, no. 1, pp. 109-126, Jun. 2019.
[18] M. Ghasemi, A. Kazemi, A. Mazza, and E. Bompard, "A three-stage stochastic planning model for enhancing the resilience of distribution systems with microgrid formation strategy," IET Gen., Trans. and Dist., vol. 15, no. 13, pp. 1908-1921, Feb. 2021.
[19] J. Najafi, A. Parvini, and J. M. Guerrero, "Power distribution system improvement planning under hurricanes based on a new resilience index," Sustainable Cities and Society, vol. 39, no. 1, pp. 592-604, May. 2018.
[20] Y. P. Fang and G. Sansavini, "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, vol. 185, no. 1, pp. 1-11, May. 2019.
[21] S. Ma, L. Su, Z. Wang, F. Qiu, and G. Guo, "Resilience enhancement of distribution grids against extreme weather events," IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4842-4853, Sept. 2018.
[22] S. Ma, S. Li, Z. Wang, and F. Qiu, "Resilience-oriented design of distribution systems," IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2880-2891, Jul. 2019.
[23] A. Rashki, N. J. Middleton, and A. S. Goudie, "Dust storms in Iran-Distribution, causes, frequencies and impacts," Aeolian Research, vol. 48, Article ID: 100655, 17 pp., Jan. 2021.
[24] IEC/TS60815-1 "Selection and dimensioning of high-voltage insulators intended for use in polluted conditions-Part 1: Definitions, information and general principles," 2008.
[25] پژوهشگاه نیرو، سند راهبردي و نقشه راه توسعه فناوريهاي نوين تجهيزات فشارقوي و عايقها در مناطق با اقليم خاص، 1392.
[26] M. R. Shariati, A. R. Moradian, M. Rezaei, and S. J. A. Vaseai, "Providing the pollution map in south west provinces of Iran based on DDG method," in Proc. IEEE/PES Trans. Dist. Conf.: Asia and Pacific, 5 pp., Dalian, China, 18-18 Aug. 2005.
[27] M. Haghshenas, R. A. Hooshmand, and M. Gholipour, "Power distribution system resilience enhancement planning against extreme dust storms via pre-and post-event actions considering uncertainties," Sustainable Cities and Society, vol. 78, Article ID: 103626, 19 pp., Mar. 2022.
[28] Iran-Insulator Co. Retrieved from: https://iraninsulator.com/en/36-kv-pin-insulator-code0309/
[29] BSA Co. Retrieved from: http://www.baspar-sazeh.com/ index.php/en/products/silicone-insulators/pine-type-insulator/155-pine-type-p-1270-9.Iran-Insulator
[30] Y. Xu, Z. Y. Dong, R. Zhang, and D. J. Hill, "Multi-timescale coordinated voltage/var control of high renewable-penetrated distribution systems," IEEE Trans. Power Syst., vol. 32, no. 6, pp. 1498-4408, Nov. 2017.
[31] J. Li, X. Ma, C. Liu, and K. P. Schneider, "Distribution system restoration with microgrids using spanning tree search," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3021-3029, Nov. 2019.
[32] ب. صمديار، ع. محب¬الحجه و ا. طهماسبي پاشا، ”بررسي آماري- ديناميكي توفان¬هاي همرفتي قوي در اهواز،“ مجله ژئوفيزيك ایران، جلد 15، شماره 2، صص. 17-1، تابستان ١٤٠٠.
[33] R. E. Brown, Electric Power Distribution Reliability, CRC Press, 2008.