Color Reduction of Hand-painted Carpet Patterns Before Discretization
Subject Areas : electrical and computer engineering
1 - Tarbiat Modares University
2 - Tarbiat Modares University
Keywords: Color reduction hand-painted pattern, egmentation C-means Persian carpet rug,
Abstract :
Carpet patterns are in two categories: machine-painted and hand-painted. Hand-painted patterns are divided into two groups: before and after discretization. The purpose of this study is color reduction of hand-painted patterns before discretization. There are some articles about color reduction of hand-painted carpet patterns after discretization, but so far, there is not an article on patterns before discretization. The proposed algorithm consists of the following steps: image segmentation, finding the color of each region, color reduction around the edges and final color reduction with C-means. For 80 segments of different 20 patterns, the algorithm has an approximate of 96% accuracy. In other words, the colors of 96% of image pixels are found correctly. The high accuracy of this method is due to its fitness to the application. The proposed method is not fully automatic and requires the total number of colors as its input.
[1] L. Brun and A. Tr´emeau, Digital Color Imaging Handbook, CRC Press, pp. 589-638, 2002.
[2] C. K. Yang and W. H. Tsai, "Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle," Pattern Recognition Letters, vol. 19, no. 2, pp. 205-215, Feb. 1998.
[3] Y. Deng and B. Manjunath, "Unsupervised segmentation of color-texture regions in images and video," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800-810, Aug. 2001.
[4] N. Sherkat, T. Allen, and S. Wong, "Use of colour for hand-filled form analysis and recognition," Pattern Analysis and Applications, vol. 8, no. 1, pp. 163-180, 2005.
[5] O. Sertel, et al., "Histopathological image analysis using model-based intermediate representations and color texture: follicular lymphoma grading," J. of Signal Processing Systems, vol. 55, no. 1-3, pp. 169-183, Apr. 2009.
[6] C. T. Kuo and S. C. Cheng, "Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis," Pattern Recognition, vol. 40, no. 12, pp. 3691-3704, Dec. 2007.
[7] Y. Deng, B. Manjunath, C. Kenney, M. Moore, and H. Shin, "An efficient color representation for image retrieval," IEEE Trans. on Image Processing, vol. 10, no. 1, pp. 140-147, Jan. 2001.
[8] M. E. Celebi, "Improving the performance of K-means for color quantization," Image and Vision Computing, vol. 29, no. 4, pp. 260-271, Jan. 2011.
[9] A. Mojsilovic and E. Soljanin, "Color quantization and processing by fibonacci lattices," IEEE Trans. on Image Processing, vol. 10, no. 11, pp. 1712-1725, Nov. 2001.
[10] N. Papamarkos, A. E. Atsalakis, and C. P. Strouthopoulos, "Adaptive color reduction," IEEE Trans. on Systems, vol. 32, no. 1, pp. 44-56, Feb. 2002.
[11] P. Heckbert, "Color image quantization for frame buffer display," ACM SIGGRAPH Computer Graphics, vol. 16, no. 3, pp. 297-307, Jul. 1982.
[12] M. Gervautz and W. Purgathofer, "A simple method for color quantization: octree quantization," New Trends in Computer Graphics, Springer-Verlag, pp. 219-231, 1988.
[13] S. Wan, P. Prusinkiewicz, and S. Wong, "Variance-based color image quantization for frame buffer display," Color Research and Application, vol. 15, no. 1, pp. 52-58, Feb. 1990.
[14] G. Joy and Z. Xiang, "Center-cut for color image quantization," the Visual Computer, vol. 10, no. 1, pp. 62-66, 1993.
[15] M. Orchard and C. Bouman, "Color quantization of images," IEEE Trans. on Signal Processing, vol. 39, no. 12, pp. 2677-2690, Dec. 1991.
[16] C. Y. Yang and J. C. Lin, "RWM-cut for color image quantization," Computers and Graphics, vol. 20, no. 4, pp. 577-588, 1996.
[17] I. S. Hsieh and K. C. Fan, "An adaptive clustering algorithm for color quantization," Pattern Recognition Letters, vol. 21, no. 4, pp. 337-346, Apr. 2000.
[18] S. Cheng and C. Yang, "Fast and novel technique for color quantization using reduction of color space dimen-sionality," Pattern Recognition Letters, vol. 22, no. 8, pp. 845-856, Jun. 2001.
[19] K. Lo, Y. Chan, and M. Yu, "Colour quantization by three-dimensional frequency diffusion," Pattern Recognition Letters, vol. 24, no. 14, pp. 2325-2334, Oct. 2003.
[20] Y. Sirisathitkul, S. Auwatanamongkol, and B. Uyyanonvara, "Color image quantization using distances between adjacent colors along the color axis with highest color variance," Pattern Recognition Letters, vol. 25, no. 9, pp. 1025-1043, Jul. 2004.
[21] K. Kanjanawanishkul and B. Uyyanonvara, "Novel fast color reduction algorithm for time-constrained applications," J. of Visual Communication and Image Representation, vol. 16, no. 3, pp. 311-332, Jun. 2005.
[22] W. H. Equitz, "A new vector quantization clustering algorithm," IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 10, pp. 1568-1575, Oct. 1989.
[23] R. Balasubramanian and J. Allebach, "A new approach to palette selection for color images," J. of Imaging Technology, vol. 17, no. 6, pp. 284-290, Jun. 1991.
[24] Z. Xiang and G. Joy, "Color image quantization by agglomerative clustering," IEEE Computer Graphics and Applications, vol. 14, no. 3, pp. 44-48, May 1994.
[25] L. Velho, J. Gomez, and M. Sobreiro, "Color image quantization by pairwise clustering," in Proc. of the 10th Brazilian Symp. on Computer Graphics and Image Processing, pp. 203-210, Oct. 1997.
[26] L. Brun and M. Mokhtari, "Two high speed color quantization algorithms," in Proc. of the 1st Int. Conf. on Color in Graphics and Image Processing, pp. 116-121, 2000.
[27] ا. ايزدیپور و ا. ا. کبير، "ارائه روشی برای خواندن خودکار نقشه چاپی فرش و مقایسه آن با روش خوشهیابی C- میانگین،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، جلد 8، شماره 1، صص. 56-48، بهار 1389.
[28] Y. L. Huang and R. F. Chang, "A fast finite-state algorithm for generating RGB palettes of color quantized images," J. of Information Science and Engineering, vol. 20, no. 4, pp. 771-782, Jul. 2004.
[29] Y. C. Hu and M. G. Lee, "K-means based color palette design scheme with the use of stable flags," J. of Electronic Imaging, vol. 16, no. 3, 11 pp., Jul. 2007.
[30] Y. C. Hu and B. H. Su, "Accelerated K-means clustering algorithm for colour image quantization," Imaging Science J., vol. 56, no. 1, pp. 29-40, Dec. 2008.
[31] Z. Xiang, "Color image quantization by minimizing the maximum intercluster distance," ACM Trans. on Graphics, vol. 16, no. 3, pp. 260-276, Jul. 1997.
[32] M. E. Celebi, "An effective color quantization method based on the competitive learning paradigm," in Proc. of the 2009 Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition, vol. 2, pp. 876-880, Jul. 2009.
[33] M. E. Celebi and G. Schaefer, "Neural gas clustering for color reduction," in Proc. of the 2010 Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition, vol. 2, pp. 429-432, Jul. 2010.
[34] D. Ozdemir and L. Akarun, "Fuzzy algorithm for color quantization of images," Pattern Recognition, vol. 35, no. 8, pp. 1785-1791, Aug. 2002.
[35] G. Schaefer and H. Zhou, "Fuzzy clustering for colour reduction in images," Telecommunication Systems, vol. 40, no. 1-2, pp. 17-25, 2009.
[36] Z. Bing, S. Junyi, and P. Qinke, "An adjustable algorithm for color quantization," Pattern Recognition Letters, vol. 25, no. 16, pp. 1787-1797, Dec. 2004.
[37] A. Dekker, "Kohonen neural networks for optimal colour quantization," Network: Computation in Neural Systems, vol. 5, no. 3, pp. 351-367, 1994.
[38] C. H. Chang, P. Xu, R. Xiao, and T. Srikanthan, "New adaptive color quantization method based on self-organizing maps," IEEE Trans. on Neural Networks, vol. 16, no. 1, pp. 237-249, Jan. 2005.
[39] A. Atsalakis and N. Papamarkos, "Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas," Engineering Applications of Artificial Intelligence, vol. 19, no. 7, pp. 769-786, Oct. 2006.
[40] A. T. Ghanbarian, E. Kabir, and N. M. Charkari, "Color reduction based on ant colony," Pattern Recognition Letters, vol. 28, no. 12, pp. 1383-1390, Sep. 2007.
[41] J. Freixenet, X. Munoz, D. Raba, J. Marti, and X. Cufi, "Yet another survey on image segmentation: region and boundary information integration," Springer, pp. 408-422, 2002.
[42] L. Lucchese and S. K. Mitra, "Colour image segmentation: a state-of-the-art survey," Proc. Indian National Science Academy, INSA-A, vol. 67, no. 2, pp. 207-221, Mar. 2001.
[43] Y. Wang, Q. Guo, and Y. Zhu, "Medical image segmentation based on deformable models and its applications," Springer, 209-260, 2007.
[44] T. Zuva, O. O. Olugbara, S. O. Ojo, and S. M. Ngwira, "Image segmentation, available techniques, developments and open issues," J. on Image Processing and Computer Vision, vol. 2, no. 3, pp. 20-29, Mar. 2011.
[45] بوريا، (www.booria.com/carpetdesigner.htm).
[46] مرکز کنترل کامپيوتر ايران، نرمافزار نقشساز، (www.centraltouch.com).
[47] م. فاتح، ا. ا. کبير و م. نیلی احمدآبادی، "کاهش رنگ در نقشه چاپی فرش به کمک یادگیری تقویتشده،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، جلد 9، شماره 3، صص. 142-133، پاییز 1390.
[48] م. فاتح و ا. ا. کبير، "خواندن خودکار نقشههای دستی فرش،" پذیرفتهشده در نشریه سيستمهای هوشمند در مهندسی برق.
[49] شرکت سهامی فرش ايران، (www.irancarpet.ir).
[50] ا. ايزدیپور و ا. ا. کبير، "شناسايی خودکار خطوط نقشه فرش،" اولين کنگره مشترک سيستمهای فازی و هوشمند، مشهد مقدس، شهريور 1386.
[51] موزه فرش ایران، (http://www.allmuseums.com/carpet_museums.html).
[52] http://www.colorpilot.com/layer.html
[53] ا. ايزدیپور و ا. ا. کبير، خواندن خودکار نقشه چاپی فرش، پاياننامه کارشناسی ارشد، دانشگاه تربيت مدرس، دانشکده فنی، صص. 60-59، زمستان 1386.