Analysis and Simulation of the Microwave Heating Process in Crude Oils using FDTD Technique
Subject Areas : electrical and computer engineering
1 -
Keywords: FDTD techniquemicrowave heatingsimulationcrude oils,
Abstract :
A new method to simulate the microwave heating process in crude oils has been presented. Using convolution ( or differential) relation between E and H fields, (FD)2TD method is extracted by modifying the conventional FDTD technique for depressive materials. It is shown that the computer time and memory requirements to analyze and simulate the microwave heating process are extensively reduced. Eventually, the advantages of the technique to simulate the microwave heating process in crude oils are presented.
[1] J. M. Osepchuck, "A history of microwave heating applications," IEEE Trans. Microwave Theory Tech., vol. 32, no. 9, pp. 1200-1224, Sep. 1984.
[2] K. S. Cole and R. H. Cole, "Dispersion and absorption in dielectrics: alternating current characteristics," J. Chem. Phys., vol. 9, no. 9, pp. 341-351, Apr. 1941.
[3] P. Debye, Polar Molecules, New York: Dover, 1945.
[4] H. A. Lorentz, Theory of Electrons, New York: Dover, 1952.
[5] G. Kristensson, S. Rikte, and A. Sihvola, "Mixing formulas in time domain," Jounral of the Optical Society of America A, vol. 15, no. 5, pp. 1411-1422, May 1998.
[6] T. P. Iglesias, J. Peón Fernández, J. Martín-Herrero, and A. Seoane, "A mixing rule for permittivity from an approximation of a model in a framework of a mesoscopic scale," Journal of molecular liquids, vol. 95, no. 2, pp. 147-155, Feb. 2002.
[7] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Materials Science, vol. 25, Springer, Berlin, 1995.
[8] R. J. Spiegel, "A review of numerical models for predicting the energy deposition and resultant thermal response of humans exposed to electromagnetic fields, (invited paper)," IEEE Trans. Microwave Theory Tech., vol. 32, no. 8, pp. 730-746, Aug. 1984.
[9] A. Taflove and M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye," IEEE Trans. Microwave Theory Tech., vol. 23, no. 11, pp. 888-896, Nov. 1975.
[10] L. Ma, et al., "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microwave Theory Tech., vol. 43. no. 11, pp. 2565-2572, Nov. 1995.
[11] F. Torres and B. Jecko, "Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media," IEEE Trans. Microwave Theory Tech., vol. 45, no. 1, pp. 108-116, Jan. 1997.
[12] J. C. Gallawa, A Brief History of the Microwave Oven, 2007. http://www.gallawa.com/microtech/history.html
[13] G. Stephens, History of Technology, 2006. http://www.sal.ksu.edu/faculty/gregs/hist231/portfolios/ash/micro.html
[14] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fileds and Waves in Communication electronics, John Wiley & Sons, New York, 1984.
[15] H. Frohlich, Theory of Dielectrics, Oxford: Clarendon, 1949.
[16] J. G. Kirkwood, "The dielectric polarization of polar liquids," J. Chem. Phys., vol. 7, pp. 911-919, Oct. 1939.
[17] S. Bialkowski, Parameters for Common Solvents, 2000. http://www.chem.usu.edu/faculty/sbialkow/Research/Tablevalues.html
[18] A. Chaudhari, et al., "Complex permittivity spectra of binary mixture of ethanol with nitrobenzene and nitrotoluene using the time domain technique," Proc. Natl. Sci. Counc. ROC(A)., vol. 25, no. 4, pp. 205-210, 2001.
[19] R. W. P. King and G. S. Smith, Antennas in Matter, Cambridge, MA: MITPress, 1981.
[20] D. D. Hass, Dielectric Sensing of Ceramic Particle Suspensions, M.S. Thesis, Ch. 2, University of Virginia, 1996. http://www.ipm.virginia.edu/process/SnC/Pubs/thesis3/chapter2.pdf
[21] B. K. P. Scaife, Principle of Dielectrics, New York: Oxford, 1989.
[22] T. FriisØ, Y. Scildberg, O. Rambeau, T. Tjomsland, H. FØrdedal, and J. SjØblom, "Complex permittivity of crude oils and solutions of heavy crude oil fractions," J. Dispersion Science and Tech., vol. 19, no. 1, pp. 93-126, 1998.
[23] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, no. 3, pp. 302-307, May 1966.
[24] A. K. Dunn, Light Scattering Properties of Cells, 1997. http://www.nmr.mgh.harvard.edu/~adunn/
[25] G. D. Smith, Numerical Solution of Partial Differential Equations, Finite Difference Methods, Oxford Applied Mathematics and Computing Science Series., 1985.
[26] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New York: IEEE Press, 2000.
[27] A. Toflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, Boston: Artech House, 2000.
[28] O. P. Gandhi, B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microwave Theory Tech., vol. 41, no. 3, pp. 658-664, Mar. 1993.
[29] H. Emami, A. Mohammadi, and A. Abdipour, "FDTD analysis of microwave heating process in organic materials," in Proc. Asian Pacific Microwave Conf., APMC 2003, pp. 842-846, Seoul, Korea, Nov. 2003.
[30] D. M. Sullivan, "A frequency-dependent FDTD method for biological applications," IEEE Trans. Microwave Theory Tech., vol. 40, no. 3, pp. 532-539, Mar. 1992.
[31] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Shcneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagnetic Compatibility, vol. 32, no. 3, pp. 222-227, Aug. 1990.
[32] S. Brand, Dielectrics Resume, Course Handout, http://www.dur.ac.uk/stuart.brand/dielectricsresume.pdf
[33] H. J. Liebe, T. Manabe, and G. A. Hufford, "Millimeter-wave attenuation and delay rates due to fog/cloud conditions," IEEE Trans. Antennas Propagat., vol. 37, no. 12, pp. 1617-1623, Dec. 1989.
[34] M. Nachman and G. Turgeon, "Heating pattern in multi-layered material exposed to microwaves," IEEE Trans. Microwave Theory Tech., vol. 32, no. 5, pp. 547-552, May 1984.
[35] Y. Alpert and E. Jerby, "Coupled thermal- electromagnetic model for microwave heating of temperature-dependent dielectric media," IEEE Trans. Plasma Science, vol. 27, no. 2, pp. 555-562, Apr. 1999.