The effect of firm capabilities on the innovative Performance of Iranian knowledge-based Firms
Subject Areas : SpecialJavad Soltanzadeh 1 , Esmaeil Ghaderifar 2 , Hojat Rezaei Soufi 3
1 - Assistant Professor, Faculty of Economic and Administrative Sciences, Mazandaran University, Mazandaran, Iran
2 - PhD in Technology Management, Allameh Tabatabai University, Tehran, Iran
3 - Doctor of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords: Innovation, Innovation Capabilities, Innovative Performance, Knowledge-based Firm,
Abstract :
Firms try to increase their innovative performance to survive in a turbulent market and improve their competitive position. Combining these efforts does not necessarily lead to profit and increase their market share. To understand this shortcoming, researchers look at the factors that affect innovation performance and how to measure it. However, the subject that needs to be addressed is the firm's innovative behavior, which can affect innovation performance. By borrowing from the concept of dynamic capabilities, the present study has tried to classify the possible types of capabilities to create new products, services, and processes into three general categories: innovation capabilities, collaboration-based capabilities, and complementary capabilities, and by presenting different hypotheses for the effectiveness of these capabilities. Test the firm in innovative performance. For this purpose,180 questionnaires were distributed among firms to report the number of new products/services, the number of new processes, their financial performance, and the types of measures taken in their field of innovation from 1392 to 1394. After confirming their validity and reliability and creating structural equations using the partial least squares (PLS) method, results showed that innovation capabilities and collaboration-based capabilities significantly positively affect innovation performance. Also, research and development, training of human resources, design, collaborative research and development, and purchase of technical knowledge have significant path coefficients in the resulting PLS model and significantly affect innovation. In addition, the purchase of machinery and tools only significantly affects the creation of innovation.
ابراهیمینژاد, و دهقانیسلطانی. (2018). نقش قابلیتهای نوآوری فناورانه در ارتقاء عملکرد نوآوری شرکتهای دانش بنیان (مطالعهی شرکتهای مستقر در پارک علم و فناوری دانشگاه تهران). پژوهش های مدیریت عمومی, 41(11), 86-110
استادی,بختیار,صدری,مسعود. (1399) .شناسایی و اولویت بندی شاخص های ارزیابی عملکرد شرکت های دانش بنیان .فصلنامه نوآوری و ارزش آفرینی(9) 18: 80-69.
اکبری، م.، و ایمانی، ص.، و محمودی، ر.، و عابدی، ه.، و طلوع اصل، ه. (1396). اثرات ساختار شبکه, ذخیره دانش و ظرفیت جذب بر عملکرد نوآورانه شرکت های دانش بنیان. نوآوری و ارزش آفرینی, 6(12 ), 1-20.
داوری، علی و رضازاده، آرش (1392)، «مدلسازی معادلات ساختاری با نرمافزارPLS»، سازمان انتشارات جهاد دانشگاهی
رضوی، س.، و شهریاری، س.، و احمدپورداریانی، م. (1394). ارزیابی عملکرد نوآورانه شرکت های دانش بنیان با استفاده از تحلیل پوششی داده های شبکه ای-رویکرد تئوری بازی. مدیریت صنعتی, 7(4 ), 721-742.
قائدی، م.، و علیزاده ثانی، م. (1395). تبیین نقش سرمایه اجتماعی بر عملکرد نوآوری در شرکت های دانش بنیان. مدیریت سرمایه اجتماعی, 3 (4 ), 607-628.
Adler, P. S., & Shenbar, A. (1990). Adapting your technological base: the organizational challenge. Sloan Management Review, 32(1), 25-37.
Agyapong, A., & Acquaah, M. (2016). The Direct and Indirect Effects of Innovative Capability on Firm Performance: Evidence from Micro and Small Family Businesses in Ghana. In Family Businesses in Sub-Saharan Africa(pp. 175-204). Palgrave Macmillan US.
Ambrosini, V., & Bowman, C. (2009). What are dynamic capabilities and are they a useful construct in strategic management? International Journal of Management Reviews, 11(1), 29-49.
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of management, 17(1), 99-120.
Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments. Technological forecasting and social change, 80(8), 1513-1522.
Brenner, T., & Broekel, T. (2011). Methodological issues in measuring innovation performance of spatial units. Industry and Innovation, 18(1), 7-37.
Caloghirou, Y., Kastelli, I., & Tsakanikas, A. (2004). Internal capabilities and external knowledge sources: complements or substitutes for innovative performance?. technovation, 24(1), 29-39.
Chiesa, V. (2000). Global R&D project management and organization: a taxonomy. Journal of Product Innovation Management, 17(5), 341-359.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In: G. A. Marcoulides (Ed.), modern methods of business research, 295-358.
Choi, S. B., Park, B. I., & Hong, P. (2012). Does ownership structure matter for firm technological innovation performance? The case of Korean firms. Corporate Governance: An International Review, 20(3), 267-288.
Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great firms to fail. Harvard Business Review Press. Christensen, J. F. (1995). Asset profiles for technological innovation. Research Policy, 24(5), 727-745.
Cohen, W. M. (1995). Empirical studies of innovative activity. In P. Stoneman (Ed.), Handbook of the economics of innovation and technological change (pp. 342–365). Blackwell.
Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: the two faces of R & D. The economic journal, 99(397), 569-596.
Czarnitzki, D., Ebersberger, B., & Fier, A. (2007). The relationship between R&D collaboration, subsidies and R&D performance: empirical evidence from Finland and Germany. Journal of applied econometrics, 22(7), 1347-1366.
Danneels, E. (2011). Trying to become a different type of company: Dynamic capability at Smith Corona. Strategic management journal, 32(1), 1-31.
De Faria, P., Lima, F., & Santos, R. (2010). Cooperation in innovation activities: The importance of partners. Research Policy, 39(8), 1082-1092.
Dinis, A. (2006). Marketing and innovation: Useful tools for competitiveness in rural and peripheral areas. European planning studies, 14(1), 9-22.
Dixon, S., Meyer, K., & Day, M. (2014). Building dynamic capabilities of adaptation and innovation: a study of micro-foundations in a transition economy. Long range planning, 47(4), 186-205.
Ebersberger, B., Galia, F., Laursen, K., & Salter, A. (2021). Inbound open innovation and innovation performance: A robustness study. Research Policy, 50(7), 104271.
Ebrahimi, P., Hajmohammadi, A., & Khajeheian, D. (2020). Place branding and moderating role of social media. Current Issues in Tourism, 23(14), 1723-1731.
Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: what are they?. Strategic management journal, 21(10-11), 1105-1121. Fagerberg, J. (2004). Innovation: a guide to the literature.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing research, 440-452.
Fornell, C., & Larimer, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research, 39-50.
Guan, J., & Ma, N. (2003). Innovative capability and export performance of Chinese firms. Technovation, 23(9), 737-747.
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
Helfat, C., & Peteraf, M. (2009). Understanding dynamic capabilities: progress along a developmental path. Strategic organization, 7(1), 91.
Hsu, C. W., Lien, Y. C., & Chen, H. (2015). R&D internationalization and innovation performance. International Business Review, 24(2), 187-195.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Hurley, R. F., & Hult, G. T. M. (1998). Innovation, market orientation, and organizational learning: an integration and empirical examination. The Journal of Marketing, 42-54.
Leung, T. Y., & Sharma, P. (2021). Differences in the impact of R&D intensity and R&D internationalization on firm performance–Mediating role of innovation performance. Journal of Business Research, 131, 81-91.
Love, J. H., & Mansury, M. A. (2007). External linkages, R&D and innovation performance in US business services. Industry and Innovation, 14(5), 477-496.
Macdonald, S., Assimakopoulos, D., & Anderson, P. (2007). Education and Training for Innovation in SMEs A Tale of Exploitation. International Small Business Journal, 25(1), 77-95.
Minarelli, F., Raggi, M., Viaggi, D., 2015. Determinants of the type of Innovation: an analysis of European food SMEs. Bio-based Appl. Econ. 4, 33–53.
Moghadamzadeh, A., Ebrahimi, P., Radfard, S., Salamzadeh, A., & Khajeheian, D. (2020). Investigating the Role of Customer Co‐Creation Behavior on Social Media Platforms in Rendering Innovative Services. Sustainability, 12(17), Doi: 10.3390/su12176926 Moorman, C., & Slotegraaf, R. J. (1999). The contingency value of complementary capabilities in product development. Journal of Marketing Research, 239-257.
Moss, E., Rousseau, D., Parent, S., St-Laurent, D., & Saintonge, J. (1998). Correlates of attachment at school age: Maternal reported stress, mother-child interaction, and behavior problems. Child Development, 1390-1405.
O'Connor, G. C. (2008). Major innovation as a dynamic capability: A systems approach. Journal of product innovation management, 25(4), 313-330.
Pavitt, K. (1984). Sectoral patterns of technical change: towards a taxonomy and a theory. Research policy, 13(6), 343-373.
Prajogo, D. I., & Ahmed, P. K. (2006). Relationships between innovation stimulus, innovation capacity, and innovation performance. R&D Management, 36(5), 499-515.
Sampson, R. C. (2007). R&D alliances and firm performance: The impact of technological diversity and alliance organization on innovation. Academy of Management Journal, 50(2), 364-386.
Santamaría, L., Nieto, M. J., & Barge-Gil, A. (2009). Beyond formal R&D: Taking advantage of other sources of innovation in low-and medium-technology industries. Research Policy, 38(3), 507-517.
Song, J. (2016). Innovation ecosystem: impact of interactive patterns, member location and member heterogeneity on cooperative innovation performance. Innovation, 18(1), 13-29.
Teece, D. J. (1986). Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research policy, 15(6), 285-305.
Teece, D. J. (2007). Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance. Strategic management journal, 28(13), 1319-1350.
Teece, D., & Pisano, G. (1994). The dynamic capabilities of firms: an introduction. Industrial and corporate change, 3(3), 537-556.
Tenenhaus, M., Amato, S., & Esposito Vinzi, V. (2004). A global goodness-of-fit index for PLS structural equation modeling. In proceedings of the XLII SIS scientific meeting. 739-742.
Un, C. A., & Asakawa, K. (2015). Types of R&D collaborations and process innovation: The benefit of collaborating upstream in the knowledge chain. Journal of Product Innovation Management, 32(1), 138-153.
Veugelers, R., & Cassiman, B. (1999). Make and buy in innovation strategies: evidence from Belgian manufacturing firms. Research policy,28(1), 63-80.
Wang, C. L., & Ahmed, P. K. (2007). Dynamic capabilities: A review and research agenda. International Journal of Management Reviews, 9(1), 31-51.
Wetzels, M., Odekerken-schroder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration, MIS quarterly, 33(1), 177.
Yi, J., Murphree, M., Meng, S. and Li, S. (2021), The more the merrier? Chinese government R&D subsidies, dependence, and firm innovation performance. J. Prod. Innov. Manag., 38: 289-310. https://doi.org/10.1111/jpim.12564
YU, P., & LI, M. (2007). The Evaluation on Financial Innovative Capability [J]. Contemporary Economy & Management, 3, 024.
Zahra, S. A., Sapienza, H. J., & Davidsson, P. (2006). Entrepreneurship and dynamic capabilities: a review, model and research agenda. Journal of Management studies, 43(4), 917-955.
Zhang, J., Yu, B., & Lu, C. (2021). Exploring the Effects of Innovation Ecosystem Models on Innovative Performances of Start-Ups: The Contingent Role of Open Innovation. Entrepreneurship Research Journal.
Zhang, S., Han, C. and Chen, C. (2022), Repeated partnerships in university-industry collaboration portfolios and firm innovation performance: roles of absorptive capacity and political connections. R&D Management. https://doi.org/10.1111/radm.12524 Žižka, M., Valentová, V., Pelloneová, N., & Štichhauerová, E. (2018). The effect of clusters on the innovation performance of enterprises: traditional vs new industries. Entrepreneurship and Sustainability Issues, 5(4), 780-794.
Zollo, M., & Winter, S. G. (2002). Deliberate learning and the evolution of dynamic capabilities. Organization science, 13(3), 339-351.