Evaluation of health risk due to inhalation of volatile organic components in the ambient air of Khorramabad.
Subject Areas : air pollution
1 - Tehran university
Keywords: carcinogenic risk . BTEX, non -carcinogenic, volatile components,
Abstract :
In this paper, carcinogenic and non-carcinogenic risk assessment is investigated by inhalation volatile organic components in the ambient air of Khorramabad. These compounds include benzene, ethylbenzene , toluene , xylenes (BTEX) and normal Hexane. To assess the risk ,first two different scenarios were defined based on the exposure of people to the organic compounds in question and the duration of respiration. Then, the average amount of intake CDI or respiration of mentioned pollutants during life was extracted based on dual scenarios in 11 areas of Khorramabad city. The carcinogenic risk for benzene and ethylbenzene compounds as well as the non- carcinogenic risk for all pollutants discussed in both scenarios were calculated and discussed. It should be noted that due to the high amount of calculations and ease and accuracy in results, programming was done in excel software environment and the initial and final results were calculated directly from this method and the necessary diagrams were drawn. According to the calculation , the annual risk and the total risk of carcinogenicity of inhaling the pollutants in question in the air of Khorramabad for the first scenario are equal to 1.51 E -06 and 5.65 E-01 people per year , respectively. Also, the annual risk and the total risk for the second scenario are 6.19E-07 and 2.31 E-01 per year ,respectively. In addition , the non-carcinogenic risk index for inhalation of the these compounds in the ambient air of Khorramabad is 3.898 and 0.594 for the first and second scenarios respectively.
1- Haugen .M R, Risk Assessment, second edition , Wiley 2012.≠
2- Faye S, Pamela K ,Lattimore , John R , HEPBURN Handbook on Risk and Need Assessment theory and practice,The ASC Division on Correction &Sentencing Handbook Series. ≠
3- Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, National Center for Environmental Assessment . ≠
4- Rashidi R ,Almasian M. The measurement of volatile organic compounds in the ambient air of Khorramabad city and its compairsion with current standarads. Yafteh ,2015:16 (4) :54-61. (In Persian). ≠
5- Occupational Safety and Health Administration (OSHA). Chemical Information Manual. OSHA Instruction, CPL, 2-2.43A, 2010. ≠
6- Clayton G, Patry S. Industrial Hygiene and Toxicology. 2nd ed. New York, 2006. ≠
7- United States Environmental Protection Agency (USEPA). Guidelines for Carcinogen Assessments. 2nd ed. ≠
8- Occupational Safety and Health Administration (OSHA). Regulated Hazardous Substances. U.S. Department of Labor, 2012. ≠
9- World Health Organization (WHO). Indoor Air Pollution and Health. Retrieved from http://www.who.int/mediacentre. Geneva Switzerland, WHO; 2005. ≠
10- Gunnar W. Urban flux measurement of energy and trace gases from a tall lattice tower near Houston. Tx. A report to the Texas Air Research Center (TARC), Lamar University Tx; October, 2007. ≠
11- Bahrami AR. Distribution of volatile organic compounds in ambient air of Tehran. Arch Environ Health. 2001; 56(4): 380-382. ≠
12- Lopez-Mahia P, Muniategal-lorenz S, Lopez-Moure MP, Oineiro-Iglesias M, Prarada-Rodriguez D. Determination of aliphatic and polycyclic aromatic hydrocarbons in atmospheric particulate samples of Acoruna City (Spain). Int J Environ Sci Pall Res. 2003; 10(2): 98-102. ≠
13- Gunnar W. Urban flux measurement of energy and trace gases from a tall lattice tower near Houston. Tx. A report to the Texas Air Research Center (TARC), Lamar University Tx; October, 2007. ≠
14- Human Risk Assessment Toxicology and Risk Assessment. Anna M. Fan, Elaine M. Khan , George V. Alexeef. ≠
15- Wallace LA. The exposure of general population to benzene. Cell Biol Toxical, 2010; 5(3): 197. ≠
16- Risk Assessment information system , US Department of Energy(DOE), Office of Environmental Management. ≠
17- Bakeas EB, Siskon PA. Dispersion of volatile hydrocarbons in urban street canyons. J Air Waste Manag Assoc 2003; 53(4): 493-504. ≠
18- Keshavarzi Shirazi H. Determining the amount of gasoline wasted at gas stations in Tehran, Iran, and methods for controlling, limiting, and recycling the wastage. Environ Studies J. 2004; 36: 33-40. (In Persian). ≠
19- . Bozlaker A, Muezzinoglu A, Odabasi M. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHS) in an industrial region in Turkey. J of Hazard Mat. 2008; 153: 1093-1102. ≠
20- Lopez-Mahia P, Muniategal-lorenz S, Lopez-Moure MP, Oineiro-Iglesias M, Prarada-Rodriguez D. Determination of aliphatic and polycyclic aromatic hydrocarbons in atmospheric particulate samples of Acoruna City (Spain). Int J Environ Sci Pall Res. 2003; 10(2): 98-102. ≠
21- National Institute of Occupational Safety and Health, NIOSH Manual of Analytical Methods [online], 2008: Available from: URL:http://www.cdc.gov. ≠
22- Setareh H. The quantitative and qualitative evaluation of total hydrocarbons and styrene in ambient air at Tabriz petrochemical complex in olifne and styrene monomer units and persentation of proper controling. MSc. Thesis. Tarbiat Modares University, 2001. (In Persian). ≠
23- Fazlzadeh M. The measurement of the BTEX compounds in the air of Tehran, Iran. J the Babol Univ of Med Sci 2011; 14: 50- 55. (In Persian). ≠
چکیده: