Petrography and geochemistry of igneous rocks and antimony mineralization in Lakhshak, northwest of Zahedan, southeastern Iran
Subject Areas :*, Halimeh Mojadadi 1 , Mohammad Boomeri 2 , Habib Biabangard 3
1 -
2 -
3 -
Keywords: Sistan suture zone, Intrusive and subvolcanic igneous rocks, Sb mineralization ,
Abstract :
The Lakhshak Sb index is located in the northwest of Zahedan in the Sistan suture zone. The geological units of the area include metamorphosed flysch (garnet schist, actinolite schist, phylite, mylonite), granitoid pluton, acidic and basic dikes, mineralized and un-mineralized silicic veins. According to the geochemical studies, Lakhshak igneous rocks are calc-alkaline, high-K calc-alkaline and shoshonitic, metaaluminous rocks which are belong to the volcanic arc, and collisional and post-collisional tectonic settings. The studied igneous rocks are characterized by LREE and LILE enrichment relative to HREE and HFSE. Enrichment of Pb and depletion of Zr, Nb and Y are more consistent with melts generated from the lower crust. In the Lakhshak area, the Sb mineralization mainly occurs as quartz-stibnite veins in type-like rocks and is associated with silicic, argillic and phyllic alterations.
بومری، م.، 1393. کانسارها و اندیسهای معدنی در استان سیستان و بلوچستان، ششمین همایش انجمن زمینشناسی اقتصادی، دانشگاه سیستان و بلوچستان، 103-98.
بومری، م.، مجددیمقدم و بیابانگرد، ح.،۱۳۹۷، سنگشناسی و زمینشیمی سنگهای آذرین و کانی زایی آنتیموان و طلا در منطقة سفیدسنگ و درگیابان. پترولوژی، 193،۳۵،9 -۲۱۶.
خرمی، ز.، 1391. ژنز کانسار آنتیموان بائوت، پایاننامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، زاهدان، ایران، 149.
رضایی کهخایی، م. رهبر، ر.، و قاسمی، ح.، 1396. تعیین سن مجموعه نفوذی لخشک به روش اورانیوم-سرب روی کانیهای زیرکن و تیتانیت، شرق ایران، مجله بلور و کانیشناسی،25،1، 111-122.
سرحدی، ن.، احمدی، ع.، فیروزکوهی، ز.، و جامی، م.، 1396. سنگشناسی و ژئوشیمی دایک های مزوکرات و ملانوکرات در پیکره گرانودیوریتی لخشک، شمال باختر زاهدان، علوم زمین،26، 104، 149-168.
فرشیدپور، ج.، 1391. ژنز کانسار آنتیموان سفیدآبه، پایاننامه کارشناسی ارشد، دانشگاهسیستان و بلوچستان، زاهدان، ایران، 125.
کنعانیان. ع.، رضایی کهخایی، م.، الیاسی، م.، و اسماعیلی، د.، 1386. شواهد پتروگرافي حاکي از دگرشكلي دماي بالا در سنگهای حاشيه توده گرانيتوئيدي لخشك،شمال غرب زاهدان، ايران. مجله علوم دانشگاه تهران، 33،1، 39-47.
مارزی، م.، 1394. کانیشناسی، دگرسانی و منشاء کانیزایی آنتیموان و طلا در منطقه سفیدسنگ، جنوب زاهدان، پایاننامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، زاهدان، ایران،267.
مجددیمقدم، ح.، 1398. ژئوشیمی،زمین حرارت-فشار سنجی رگههای آنتیموان در مناطق درگیابان،سفیدسنگ، لخشک، شورچاه، بائوت و سفیدابه، رساله دکترای تخصصی، دانشگاه سیستان و بلوچستان، زاهدان، ایران، 311.
مرادی، ر. بومری، م. باقری، س و زاهدی، ا .، 1394. تعیین شرایط فیزیکوشیمیایی و عوامل کنترلکننده کانیزایی با استفاده از کانهنگاری روابط پاراژنزی و میانبار سیال در کانساراستیبنیت- طلا شورچاه، جنوب شرق زاهدان. مجله بلور و کانیشناسی، 23، 121-134.
مرادی، ر.، 1391. سبک و منشاءکانیزایی آنتیموان و طلا در شورچاه، جنوب شرق زاهدان، پایاننامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، زاهدان، ایران، 158.
مظلوم، غ.، 1396. کانیشناسی، ژئوشیمی و ژنز کانسار آنتیموان لخشک، شمالغرب زاهدان. پایاننامه کارشناسی ارشد، دانشگاه شاهرود، شاهرود، ایران، 171.
هدایتی، ن.، بومری، م. و بیابانگرد، ح.، 1395. ویژگیهای ژئوشیمیایی و سنگشناسی مجموعه آذرین نخیلاب، شمال باختر زاهدان. مجله پترولوژی، 26، 23-44.
Aragon, E., Gonzalez, P., Yolanda, E., Cavarozzi, A.C., Llambias, E. and Rivalenti, G., 2002. Thermal divide andesites–trachytes, petrologic evidence, and implications from Jurassic north Patagonian massif alkaline volcanism. Journal of South American Earth Sciences, 103, 16-91.
Asiabanha, A., Bardintzeff, J.M., Kananian, A. and Rahimi, G., 2012. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution. Journal of Asian Earth Sciences, 45, 79–94.
Ayers, J., 1998. Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology, 132, 390–404.
Behrouzi, 1993. Geological map of Zahedan (1:250000), Geological Survey of Iran, Tehran.
Boomeri, M. and Lashkaripour, G.R., 2003. Granite of Zahedan, Southeastern Iran. Geophysical Research Abstracts 5, 04933.
Boomeri, M., Moradi, R., Stein, H. and Bagheri, S., 2019. Geology, Re-Os age, S and O isotopic composition of the Lar porphyry Cu-Mo deposit, southeast Iran. Ore Geology Reviews, 104, 477–494.
Boynton, W.V., 1984. Cosmochemistry of rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry (Eds. Henderson, P.), Elsevier, Amsterdam, 63– 114.
Calanchi, N., Peccerillo, A., Tranne, C.A., Lucchini, F., Rossi, P.L., Kempton, P., Barbieri, M. and Wue, T.W., 2002. Petrology and geochemistry of volcanic rocks from the Island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian Sea). Journal of Volcanology and Geothermal Research, 115, 367-395.
Camp, V.E. and Griffis, R.J., 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan Suture Zone, Eastern Iran. Lithos, 15, 221- 239.
Chappell, B.W. and White, A. J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh. Earth Sciences, 83, 1-26.
Chappell, B.W. and White, A.J.R., 1974. Two contrasting granite type. Pacific Geology, 8, 173-174.
Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks, George Allen and Unwin, London, 450.
Davidson, J.P., 1996. Deciphering mantle and crustal signatures in subduction zone magmatism in Subduction, Top to bottom (Eds. Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P.) Geophysical Monograph, American Geophysical Union, 96, 251-262.
Dill, H.D., 2010. The chessboard classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100, 1 – 420.
Girardi, J. D., Patchett, P. J., Ducea, M. N., Gehrels, G. E., Cecil, M. R., Rusmore, M. E., Woodsworth, G. J., Pearson, D. M., Manthei, C. and Wetmore, P., 2012. Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast mountains batholith, British Columbia. Journal of Petrology, 53,1505-1536.
Grove, T.L. and Donnelly-Nolan, J.M., 1986. The evolution of young silicic lavas at Medicine lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contributions to Mineralogy and Petrology, 92, 281-302.
Harris, N.B.W., Pearce, J.A. and Tindle, A.G., 1986. Geochemical characteristics of collision zone magmatism. In: Collision Tectonics (Eds. Coward, M.P. and Ries, A.C.) Special Publication, Geological Society, London, 19, 67–8.
Hastie, A.R., Kerr, A.C., Pearce, J. A. and Mitchell, S. F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology, 48, 2341-2357.
Helvaci, C., Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer, Ö. and Uzel, B., 2009. Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research, 185, 3, 181-202.
Magna, T., Janousek, V., Kohot, M., Oberli, F. and Wiechert, U., 2010. Fingerprinting sources of orogenic plutonic rocks from variscan belt with lithium isotopes and possible link to Subduction- related origin of some A-type granites. Chemical Geology, 274, 94-107.
Maniar, P.D. and Picooli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America, 101, 635-643.
Marchev, P., Raicheva, R., Downes, H., Vaselli, O., Chiaradia, M. and Moritz, R., 2004. Compositional diversity of Eocene-Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting. Tectonophysics, 393, 301–328
Martin, H., 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 3, 411-429
Mason, B. and Moore, C.B., 1983. Principle of Geochemistry. John Wiley, New York, 344.
Middlemost, E. A. K., 1985. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224.
Mohammadi, A., Burg, J.P., Bouilhol, P. and Ruh, J., 2016. U–Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: implication for closure of the south Sistan Suture Zone, Lithos, 248-251, 293-308.
Moradi, R. and Boomeri, M., 2016. Remote sensing detection of altered zones associated with Cu-Mo mineralization in North of Zahedan, SE Iran using Landsat-8 data. . Yerbilimleri, 38, 3, 275-294.
Moradi, R., Boomeri, M., Bagheri, S. and Nakashima, K., 2016. Mineral chemistry of igneous rocks in the Lar Cu-Mo prospect, southeastern part of Iran: Implications for P, T, and ƒO2. Turkish Journal of Earth Science, 25, 1–16.
Nicholson, K.N., Black, P.M., Hoskin, P.W.O. and Smith, I. E. M., 2004. Silicic volcanism and back-arc extension related to migration of the Late Cenozoic Australian- Pacific plate boundary. Journal of Volcanology and Geothermal Research, 131, 295–306.
Noll, P.D., Newsom, H.E., Leeman, W.P. and Ryan, J.G., 1996. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron: Geochimica et Cosmochimica Acta, 60, 587-611.
Pang, K.N., Chung. S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. and Lo, C.H., 2013. Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180-181, 234-251.
Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A. Fernandez C. and Vigneresse, J. L. (Eds): Understanding granites: intergrating new and classical techniques. Geological Society of London, Special Publication, 168, 55-75
Pearce, J. A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Continental Basalts and Mantle Xenoliths, Nantwich, Cheshire (Eds Hawkesworth, C.J. and Norry, M.J.), Shiva Nantwich, 230-249.
Pearce, J. A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100, 14-48.
Peccerillo, A. and Taylor S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey, Contributions to Mineralogy and Petrology, 58, 63–81.
Rollinson, H., 1993. Using Geochemical Data, Evaluation, Presentation, and Interpretation. Harlow, UK, Longman, London, UK. 344.
Rudnick, R. L., 1990. Nd and Sr isotopic compositions of lower crustal xenoliths from north Queensland, Australia: implications for Nd model ages and crustal growth processes. Chemical Geology, 83, 195-208.
Sadeghian, M., Bouchez, J. L., Ne´de´lec, A., Siqueira, R. and Valizadeh, M. V., 2005- The granite pluton of Zahedan (SE Iran): a petrological and magnetic fabric study of a syntectonic sill emplaced in a transtensional setting. Journal of Asian Earth Sciences, 25, 301–327.
Seghedi, I., Downes, H., Vaselli, O., Szakacs, A., Balogh, K. and Pecskay, Z., 2004. Postcollisional Tertiary-Quaternary mafic alkali magmatism in the Carpathian-Pannonia region: a review. Tectonophysics, 393, 43–62.
Shand, S. J., 1943. Eruptive Rocks, D. Van Nostrand Company, New York, 360.
Sun, S.S. and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Magmatism in the Ocean Basins (Eds. Saunders, A. D. and Norry, M. J.) Special Publications, Geological Society, London, 42, 313-345.
Taylor, S. R., 1965. The application of trace element data to problems in petrology. Physics and Chemistry of the Earth, 6, 133-213.
Tirrul, R., Bell, L. R., Griffis, R. J. and Camp, V. E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America, 84, 134-150.
Whitney, D. and Evans, B. D., 2010. Abbreviations for names of rock-forming minerals. . American Mineralogist, 95, 1, 185-187
Zulkarnain, I., 2009. Geochemical signature of Mesozoic volcanic and granitic rocks in Madina Regency area, North Sumatra, Indonesia, and its tectonic implication. Indonesian Journal on Geoscience, 4, 2, 117-131.