Geology, alteration and mineralization studies of the Barmolk porphyry copper deposit (North of Varzeghan – East Azarbaijan Province)
Subject Areas :علیرضا روان¬خواه 1 , Mohsen Moayyed 2 , علی لطفی¬بخش 3
1 -
2 -
3 -
Keywords: Subvolcanic domes, Barmolk porphyry body, Supergene enrichment, Epithermal, Varzeghan.,
Abstract :
Exploration area of Barmolk is located in the northwest of the country, East Azarbaijan province and northeast of the Varzeghan county. Northern outcrops of the area consist of Eocene volcanic and volcanoclastic rocks and Oligocene porphyry quartzmonzonite intrusion bodies, which are cut off by first and second generation non-mineralized dikes. Towards to the north, this mass is in contact with upper Cretaceous-Paleocene carbonate-flysch deposits. In addition, Plio-Quaternary injection of dacite subvolcanic domes and eruption of alkaline basalt in the studied area have taken place. Kighal porphyry extends to the southwest of Barmolk area. Phyllic, propylitic and argillic hydrothermal alterations were identified in this mass, but potassic alteration was not observed. This indicates that the Barmolk porphyry is not an independent mass and is the margin of Kighal porphyry mass. The main texture in this mass is porphyritic with fine-graind matrix. Mineralization appears to be disseminated, vein-veinlet and fracture surface filling including chalcopyrite, galena, sphalerite and pyrite. Pyrite content in this mass is low, and this is one of the reasons for the lack of supergene enrichment zone. Due to the presence of lead and zinc mineralization mostly in the form of vein-veinlet in the first-generation quartzdiorite dikes (DK1) and with regards to the injection of these dikes into Sungun after supergene zone formation, the mineralization of lead and zinc can be attributed to the epithermal processes, related to the Barmolk intrusive mass. Consequently, the latter mineralization occurred after the injection of first-generation quartzdiorite dikes.
بابائی، ع. علوی تهرانی، م. و نوگل¬سادات، ج.،1375. نقشه توپوگرافی اهر با مقیاس 1:250000. سازمان زمین¬شناسی و اکتشافات معدنی کشور
حیدری، م. مؤید، م. و طالبی¬راد، ف.، 1386. ماگماتیسم پلیوکواترنری در محدوده معدن مس سونگون. هفتمین همایش سالانه انجمن زمین¬شناسی ایران، دانشگاه اصفهان، 447-438.
سیمونز، و. کلاگری، ع.ا. مؤید، م. و جهانگیری، ا.، 1390. بررسی زونهای دگرسانی نوع پورفیری و رفتار ژئوشیمیائی عناصر کمیاب و نادر خاکی در آنها در منطقه کیقال (شمال ورزقان، آذربایجان¬شرقی). مجله بلورشناسی و کانی¬شناسی ایران، 19، 4، 578-565.
سیمونز، و. کلاگری، ع.ا. مؤید، م. و جهانگیری، ا.، 1389. بررسی سنگ¬شناسی و سنگ¬زائی استوک کوارتزمونزونیت پورفیری کیقال (شمال ورزقان، آذربایجان¬شرقی). فصلنامه زمین¬شناسی ایران، 4، 13، 60-47.
شرکت مهندسی زرناب، 1387. گزارش زمین¬شناسی محدوده بارملک، 152.
شرکت مهندسی و مشاوره¬ای پارس¬اولنگ، 1388. گزارش زمین-شناسی محدوده بارملک، 166.
Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arka, central province of Iran. Mineralogy and Petrology, 94, 1, 107-122.
Chen, J.L., Xu, J.F., Wang, B.D., Yang, Z.Y., Ren, J.B., Yu, H.X., Liu, H. and Feng, Y., 2015. Geochemical differences between subduction and collision-related copper bearing porphyries and implications for metallogenesis. Ore Geology Reviews, 70,1, 424-437.
Guilbert, J.m. and Park, C.F., Jr., 1986. The Geology of Ore Deposits. Freeman and Company, New York, 985.
Hassanpour, Sh., Alirezaei, S., Selby, D. and Sergeev, S., 2015. SHRIMP zircon U-Pb and biotite and hornblende Ar-Ar geochronology of Sungun, Haftcheshmeh, Kighal and Niaz porphyry Cu-Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran. International Journal of Earth Sciences, 104,1, 45-59.
Moayyed, M., 2004. Reporting of geological studies and drilling cores of logging in Barmolk limit. Pars olang Engineering and Consulting Co, Tehran, 170.
Richards, J.P., 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits, in Porter, T.M., (ed.), Super porphyry copper and gold deposits. A Global Perspective, PGC Publishing, Adelide, 1, 7-25.
Richards, J.P., Boyce, A.J. and pringle, M.S., 2001. Geological evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96, 271-305.
Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore deposits in Iran, NE of Zagros thrust zone. Journal of Geodynamics, 28, 237-250.
Sillitoe, R.H., 1989. Gold deposits in western Pasific island arcs: the magmatic connection, in: Keays, R.R., Ramsay, W.R.H., and Groves, D.I. (eds.), The geology of gold deposits: the perspective in 1988. Economic Geology Monograph, 6, 274-291.
Sillitoe, R.H., 1993. Gold-rich porphyry copper deposits: Geological model and exploration implications. Geological Association of Canada Special Paper, 40, 465-478.
Sillitoe, R.H., 1994. Erosion and collapse of volcanoes: Causes of telescoping in intrusion-centered ore deposits. Geology, 22, 945-948.
Sillitoe, R.H., 1998. Major regional factors favoring large size, high hypogene grade elevated gold content and supergene oxidation and enrichment of porphyry copper deposits, in: Porter, T.M., (ed.), Porphyry and Hydrothermal copper and gold deposits. A Global Perspective: PGC Publishing, Adelide, 21-34.
Sillitoe, R.H., 2000. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. SEG Reviews, 13, 315-345.
Titley, S.R. and Hicks, C.L., 1966. Geology of the porphyry copper deposits, Southwestern North America. Tuoson: Univ, Ariz Press, 287.
Waterman, G.C. and Hamilton, R.L., 1975. The Sar Cheshmeh porphyry copper deposit. Economic Geology, 70, 568-576.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposites, central Iran. International Geology Review, 47,6, 620-646.