Fast and accurate concept drift detection from event logs
Subject Areas : Generalmahdi yaghoobi 1 , ali sebti 2 , Soheila Karbasi 3
1 -
2 -
3 -
Keywords: Business process management systems, Process mining, Concept drift, Process drift detection,
Abstract :
In organizations and large companies that are using business process management systems (BPMSs), process model can change due to upstream laws, market conditions. BPMSs have flexible to these changes. Effect of these change are saved in storage devises and event logs; these changes are sometimes applied suddenly or gradually on the event logs. Changing the season or starting a new financial term can be a factor to make these changes. This change is called concept drift in business process model. On time detection and recognition of process concept drift can affect the decision making of managers and administrations of systems. An analysis of the event logs in BPMS allows the automatic detection of the concept drift. This paper presents an innovative method by introducing a modified distance function to identify the concept drift. Experimental results were performed on 72 datasets in the research history, which included 648 concept drifts in 12 different types. It shows that the proposed method detects 98.18% of the drifts, while the proposed method is much faster than other state of the art methods.
W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
2. R. P. J. C. Bose, W. M. P. van der Aalst, I. . Žliobait\.e, and M. Pechenizkiy, “Handling concept drift in process mining,” in International Conference on Advanced Information Systems Engineering, 2011, pp. 391–405.
3. A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Handling local concept drift with dynamic integration of classifiers: Domain of antibiotic resistance in nosocomial infections,” in 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06), 2006, pp. 679–684.
4. M. Pechenizkiy, J. Bakker, I. Žliobaitė, A. Ivannikov, and T. Kärkkäinen, “Online mass flow prediction in CFB boilers with explicit detection of sudden concept drift,” ACM SIGKDD Explor. Newsl., vol. 11, no. 2, pp. 109–116, 2010.
5. M. Van Leeuwen and A. Siebes, “Streamkrimp: Detecting change in data streams,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2008, pp. 672–687.
6. D. Brzezinski and J. Stefanowski, “Reacting to different types of concept drift: The accuracy updated ensemble algorithm,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 81–94, 2014.
7. A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Fast and accurate business process drift detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9253, pp. 406–422, 2015.
8. M. Reichert, C. Hensinger, and P. Dadam, “Supporting adaptive workflows in advanced application environments,” 1998.
9. S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for dynamic changes in workflow systems, a survey,” Data Knowl. Eng., vol. 50, no. 1, pp. 9–34, 2004.
10. A. Adriansyah et al., “Process mining manifesto,” 2012.
11. R. Accorsi and T. Stocker, “Discovering workflow changes with time-based trace clustering,” in International Symposium on Data-Driven Process Discovery and Analysis, 2011, pp. 154–168.
12. J. Carmona and R. Gavalda, “Online techniques for dealing with concept drift in process mining,” in International Symposium on Intelligent Data Analysis, 2012, pp. 90–102.
13. A. Ostovar, S. J. J. Leemans, and M. La Rosa, “Robust drift characterization from event streams of business processes,” ACM Trans. Knowl. Discov. from Data, vol. 14, no. 3, pp. 1–57, 2020.
14. J. Martjushev, R. P. J. C. Bose, and W. M. P. van der Aalst, “Change point detection and dealing with gradual and multi-order dynamics in process mining,” in International Conference on Business Informatics Research, 2015, pp. 161–178.
15. C. W. Günther, S. Rinderle, M. Reichert, and W. Van Der Aalst, “Change mining in adaptive process management systems,” in OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", 2006, pp. 309–326.
16. R. P. J. C. Bose, W. M. P. Van Der Aalst, I. . Žliobait\.e, and M. Pechenizkiy, “Dealing with concept drifts in process mining,” IEEE Trans. neural networks Learn. Syst., vol. 25, no. 1, pp. 154–171, 2014.
17. A. Seeliger, T. Nolle, and M. Mühlhäuser, “Detecting Concept Drift in Processes using Graph Metrics on Process Graphs,” pp. 1–10, 2017.
18. A. Ostovar, M. Abderrahmane, M. La Rosa, A. H. ter Hofstede, and B. F. van Dongen., “Detecting drift from event streams of unpredictable business processes,” in International Conference on Conceptual Modeling, 2016, pp. 330–346.
19. R. Accorsi and T. Stocker, “Discovering workflow changes with time-based trace clustering,” in International Symposium on Data-Driven Process Discovery and Analysis, 2011, pp. 154–168.
20. B. Hompes, J. C. A. M. Buijs, W. M. P. van der Aalst, P. Dixit, and H. Buurman, “Detecting Change in Processes Using Comparative Trace Clustering.,” in SIMPDA, 2015, pp. 95–108.
21. Y. Xie, C. F. Chien, and R. Z. Tang, “A dynamic task assignment approach based on individual worklists for minimizing the cycle time of business processes,” Comput. Ind. Eng., vol. 99, no. 12, pp. 401–414, 2016.
22. A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Detecting sudden and gradual drifts in business processes from execution traces,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2140–2154, 2017.