پترولوژی، ژئوشیمی و پتانسیل اسکارن زایی توده گرانیتوئیدی سامن (جنوب غرب ملایر، همدان)
الموضوعات :حسن زمانیان 1 , فرهاد احمدنژاد 2 , اکرم کرمی 3 , بتول تقی پور 4
1 - دانشگاه لرستان
2 - دانشگاه لرستان
3 - دانشگاه لرستان
4 -
الکلمات المفتاحية: ژئوشیمی اسکارن Au-Cu تکامل ماگما حاشیه قاره¬, ای گرانیتوئید سامن,
ملخص المقالة :
گرانیتوئید سامن در امتداد بخش شمال غربی پهنه سنندج- سیرجان در جنوب غربی ملایر واقع شده است. بر اساس ویژگی های کانی شناسی و ژئوشیمیایی پنج رخساره اصلی شامل واحدهای گرانودیوریت، مونزوگرانیت، سینوگرانیت، آلکالی فلدسپار گرانیت و کوارتزمونزونیت در گرانیتوئید سامن تشخیص داده شده است. واحدهای گرانودیوریتی در مقایسه با سایر واحدها از گسترش بیشتری برخوردار بوده و غالب ترکیب این توده را به خود اختصاص میدهند. ژئوشیمی عناصر اصلی نشان می دهد که گرانیتوئید سامن متاآلومینوس (ACNK=0.75) تا پرآلومینوس (ACNK=1.21) بوده و در دسته گرانیت های قوس های آتشفشانی (VAG) مرتبط با حاشیه فعال قاره ای قرار می-گیرد، و از لحاظ ویژگیهای پتروشیمیایی متعلق به سری کالک آلکالن با پتاسیم بالا میباشد. تهی شدگی واحدهای سنگی گرانیتوئید سامن از عناصر Nb، Zr، Hf، Y، Ti و HREE و غنیشدگی از عناصر K، Rb، Cs، Th و LREE با ویژگی جایگاههای قوسی مرتبط با فرورانش پوسته اقیانوسی نئوتتیس به زیر پهنه سنندج- سیرجان سازگار میباشد. بررسی های صورت گرفته نشان میدهد که این توده توسط واکنش و فعل و انفعال با پوسته بالایی آلودگی پیدا کرده است. در منطقه سامن برون اسکارن کلسیک (گراسولار-آندرادیت/ اوژیت-دیوپسید) و درون اسکارن (ترمولیت-اکتینیولیت/ اپیدوت) در امتداد همبری گرانیتوئید و مرمر رخ داده است. مطالعه حاضر نشان میدهد که ویژگیهای ژئوشیمیایی گرانودیوریت ها و کوارتزمونزونیت های سامن به ترتیب مشابه ترکیب متوسط گرانیتوئیدهای همراه با اسکارن های Au-Cu و Fe بوده درحالیکه ویژگیهای ژئوشیمیایی واحدهای مونزوگرانیتی، سینوگرانیتی و آلکالی فلدسپار گرانیتی سامن به ترکیب گرانیتوئیدهای همراه با اسکارن های Sn و Mo نزدیک تر میباشد. گرانیتوئیدهای سامن را میتوان بر اساس شرایط اکسایشی و میزان تکامل ماگما در دسته گرانیتوئیدهای نسبتا تکامل نیافته تا اندکی تکامل یافته و اکسایشی همانند بیشتر مجموعههای فلزی اصلی Au-Cu در مقیاس جهانی رده بندی کرد.
- حسین پور، ز.،1382. پتروگرافی و پترولوژی توده نفوذی سامن و دگرگونی اطراف آن ، پایاننامه کارشناسی ارشد، دانشگاه تربیت معلم، 220 ص.
سپاهي گرو، ع.ا.، سپه وند، ف.، احمدي خلجي، ا. و سلامي، ص.، 1393. پتروگرافي، شيمي کانیها و ژئوشيمي گرانيتوئيدهاي مجموعه پلوتونيک سامن (جنوب غرب ملاير، همدان(. مجله پترولوژى، 18، 77-92.
کرمی، ا.، 1392، زمینشناسی اقتصادی اسکارن انجیره ملایر، غرب ایران، ، پایاننامه کارشناسی ارشد، دانشگاه لرستان، 244 ص.
- مجیدی فیضآبادی، ت.، 1375. بررسی پترولوژی و ژئوشیمی توده نفوذی غرب سامن، پایاننامه کارشناسی ارشد، دانشگاه تبریز، 197 ص.
- مدنی، ح .، 1359. پتروگرافی و پترولوژی توده آذرین گرانیتوئیدی منطقه سامن و سنگهای همبری آن، پایاننامه کارشناسی ارشد، دانشگاه تهران، 184 ص.
- Ahadnejad, V., Valizadeh, M.V. and Esmaeily, D., 2008. The Role of Shear Zone on the Emplacement of Malayer Granitoid Rocks, NW Iran. Journal of Applied Sciences, 8, 4238–4250.
- Ahmadi Khalaji, A., Esmaeily, D., Valizadeh, M.V. and Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29, 859–877.
- Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211–238.
- Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A.A., 2012. Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chemie der Erde, 72, 363– 383.
- Berberian, M., 1977. Three phase of metamorphism in Haji-Abad quadrangle (southern extremity of the Sanadaj-Sirjan structural zone): a palaeotectonic discussion. In: Berberian, M. (Ed.), Geological Survey of Iran, Tehran, Report 40, 24.
- Berberian, M., 1995. Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241, 193–224.
- Blevin, P.L., 2004. Metallogeny of granitic rocks. The Ishihara Symposium: Granites and Associated Metallogenesis, Geoscience Australia.
- Chappell, B.W. and White, A.J.R., 1992. I and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh. Earth Sciences, 83, 1–26.
- Condie, K.C., 1989. Geochemical changes in basalts and andesites across the Archean- Proterozoic boundary:identification and significance. Lithos, 23, 1–18.
- Delaloye, M. and Bingol, E., 2000. Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review, 42, 241-268.
- Einaudi, M.T. and Burt, D.M., 1982. Introduction – terminology, classification, and composition of skarn deposits. Economic Geology, 77, 745–754.
- Fazlnia, A., Schenk, V., Straaten, F. and Mirmohammadi, M., 2009. Petrology, geochemistry, and geochoronology of trondhjemites from the Qori Complex, Neyriz, Iran. Lithos, 112, 413–433.
- Foley, S.F. and Wheller, G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanic and continental potassic igneous rocks: the role of residual titanites. Chemical Geology, 85, 1–18.
- Harker, B.R., Mosenfelder, J.L. and Gnos, E., 1996a. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust. Journal of Geophysical Research, 101, 3001–3013.
- Harker, B.R., Mosenfelder, J.L., Gnos, E., 1996b. Rapid emplacement of the Oman ophiolite: thermal and geochronologic constraints. Tectonics, 15, 1230–1247.
- Harris, N. B. W., Pearce, J. A. and Tindle, A. G., 1986. Geochemical characteristics of collision-zone magmatism. In: M.P. Coward and A.C. Ries (editors), Collision Tectonics, Geological Society, London, 67-81.
- Harris, N.B.W., Inger, S. and Xu, R., 1990. Cretaceous plutonism in Central Tibet: an example of postcollision magmatism? Journal of Volcanology and Geothermal Research, 44, 21-32.
- Henderson, P., 1984. Rare Earth Element Geochemistry. Elsevier Science, 501 pp. Hildreth, E.W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 76, 177–195.
- Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.
- Ishihara, S., 1981. The Granitoid Series and mineralization. Economic Geology 75, 458–484.
- Ishihara, S and Murakami, H., 2004. Granitoid Types Related to Cretaceous Plutonic Au-Quartz Vein and Cu-Fe Skarn Deposits, Kitakami Mountains, Japan. Resource Geology, 54, 281–298.
- Karimzadeh Somarin, A. and Moayyed, M., 2002. Granite- and gabbrodiorite-associated skarn deposits of NW Iran. Ore Geology Reviews, 20, 127–138.
- Lentz, D. R., Walker, J. A. and Stirling, J. A. R., 1995. Millstream Cu-Fe skarn deposits: an example of a Cu-bearing magnetite-rich skarn system in northern New Brunswick. Exploration and Mining Geology, 4, 15-31.
- Martin-Izard, A., Fuertes-Fuente, M., Cepedal, A., Moreiras, D., Nieto, J.G., Maldonado, C. and Pevida, L.R. 2000. The Rio Narcea gold belt intrusions: geology, petrology, geochemistry and timing. Journal of Geochemical Exploration, 71, 103-117.
- Mehrabi, B., Mahmoudi, S., Masoudi, F. and Corfu, F., 2009. Mesozoic and Cenozoic U–Pb ages and magmatic history of granitoid bodies in the northern Sanandaj-Sirjan metamorphic zone, Iran. Geological society of America, Abstracts with Programs 41, 481.
- Meinert, L.D., 1983. Variability of skarn deposits - guides to exploration. In: S.J, Boardman (Editor), Revolution in the Earth Sciences. Kendall-Hunt Publishing, Dubuque, Iowa, 301-316.
- Meinert, L.D., 1984. Mineralogy and petrology of iron skarns in western British Columbia, Canada. Economic Geology, 79, 869-882.
- Meinert, L.D., 1993. Igneous petrogenesis and skarn deposits. In: R.V. Kirkham, V.D. Sinclair, R.I. Thorpe and J.M. DUKE (Editors), Mineral Deposit Modelling. Geological Association of Canada, Special Puplications, 40, 569-583.
- Meinert, L.D., 1995. Compositional variation of igneous rocks associated with skarn deposits - chemical evidence for a genetic connection between petrogenesis and mineralization. In: J.F.H, Thompson (Editor), Magmas, fluids, and ore deposits. Mineralogical Association of Canada, Short Course Series, 23, 401-418.
- Meinert, L.D., 1997. Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology, 6, 185-208.
- Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. Journal of Asian Earth Sciences, 21, 397–412.
- Muller, D. and Groves, D.I., 1994. Potasic igneus rocks and associated gold–copper mineralization. Lecture Notes in Earth Siences, 56.
- Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimical Acta, 38, 757–775.
- Nicolescu, D., Cornell, D.H. and Bojar, A.N., 1999. Age and tectonic settings of Bocßa and Ocna de Fier-Dogneca granodiorites (southwest Romania) and of associated skarn mineralization. Mineralium Deposita, 34, 743-753.
- Pearce, J.A., Harris, N.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.
- Rogers, N.W., Hawkesworth, C.J., Parker, R.J. and Marsh, J.S., 1985. The geochemistry of potassium lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contributions to Mineralogy and Petrology, 90, 244-257.
- Rollinson, H.R., 1993. Using geochemical data: evolution, presentation, interpretation. Longman.Scientific and Technical, London, 652.
- Sajona, F.G., Maury, R.C., Bellon, H., Cotton, J. and Defant, M., 1996. High field strength elements of Pliocene-Pleistocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37, 693–726.
- Sepahi, A.A., 2008. Typology and petrogenesis of granitic rocks in the Sanandaj-Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex. Neues Jahrbuch Geologie Und Paleontologie Abhandlungen, 247, 295–312.
- Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K. and Vousoughi Abedini, M., 2010. Geochemistry and U–Pb zircon geochoronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): new evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39, 668–683.
- Shand, S.J., 1943. Eruptive Rocks. D. Van Nostrand Company, New York, 360.
- Streckeisen, A., 1976. To each plutonic rock its proper name. Earth Science Reviews, 12, 1–33.
- Tepper, J.H., Nelson, B.K., Bergantz, G.W. and Irving, A.J., 1993. Petrology of the Chilliwack Batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113, 333–351.
- Thompson, A.B., 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 18, 49–107.
- Valizadeh, M.V. and Sadeghian, M., 1996. Petrogenesis of Alvand granitoid complex. National Geoscience database of Iran, 5, 14–31 (in Persian with English abstract).
- Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
- Wilson, M., 2007. Igneous Petrogenesis. Unwin Hyman, London, 461.
- Yucel-Ozturk, Y., Helvaci, C. and Satir, M., 2005. Genetic Relations Between Skarn Mineralization and Petrogenesis of the Evciler Granitoid, Kazdag, Canakkale, Turkey and Comparison with World Skarn Granitoids. Turkish Journal of Earth Sciences, 14, 255-280.
- Zamanian, H and Asadollahi, B., 2013. Geochemistry and ore potential of the Almoughlagh batholith, western Iran. Geologos, 19, 229–242.