ریزمقیاس سازی داده رطوبت خاک ESA با استفاده از تصاویر ماهواره NOAA
الموضوعات :علی اکبر متکان 1 , داود عاشورلو 2 , حسین عقیقی 3 , غلامرضا گل صفتان 4
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
3 - دانشگاه شهید بهشتی
4 - دانشگاه شهید بهشتی
الکلمات المفتاحية: رطوبت خاک ریزمقیاس سازی NDVI LST آلبدو,
ملخص المقالة :
رطوبت خاک پارامتری حیاتی در بسیاری از فرآیندهای سطح زمین است، و سنجش از دور مایکروویو به علت برخی مزیت هایی که نسبت به روش های اپتیک دارد، در برآورد رطوبت سطح زمین موثر واقع می شود. با این وجود رطوبت خاک حاصل از سنجش از دور مایکروویو قدرت تفکیک مکانی در حدود چند ده کیلومتر دارد، که این ابعاد برای بسیاری از کاربردهای هیدرولوژیکی مانند پایش کشاورزی و پیش بینی خشکسالی و تغییر اقلیم، مناسب نیست. در پژوهش حاضر، هدف، ارائه روشی بر اساس تلفیق داده ها، به منظور افزایش قدرت تفکیک مکانی داده های رطوبت خاک تولید شده توسط بخش تغییر اقلیم سازمان فضایی اروپا، ESA، می باشد. ابتدا داده ها با قدرت تفکیک بالاتر با استفاده از تصاویر NOAA و سه شاخص NDVI، LST و آلبدو در رابطه ی رگرسیون خطی با داده های زمینی رطوبت خاک ISMN قرار می گیرند. سپس با نسبت گیری میان خروجی این داده و داده ی ESA، به افزایش قدرت تفکیک مکانی اقدام میگردد. به علت برخی محدودیت ها، مدل مورد نظر در سه منطقه مطالعاتی اجرا شد. نتایج اعتبارسنجی نشان داد که اجرای این روش می تواند بهبود معنی داری بر روی داده ESA اعمال کند.
1. بابائیان ا.، م. همایی، ع.ا. نوروزی، 1392، برآورد رطوبت خاک سطحی با استفاده از تصاویر راداری ENVISAT/ASAR. نشریه پژوهش آب در کشاورزی، ب، جلد 27، شماره 4.
2. خان¬محمدی ف.، م. همایی، ع.ا. نوروزی، 1393، برآورد رطوبت خاک به کمک شاخص¬های پوشش گیاهی و دمای سطح خاک و شاخص نرمال¬شده رطوبت با استفاده از تصاویر MODIS. نشریه حفاظت منابع آب و خاک، سال چهارم، شماره 2.
3. رحمانی¬کم ع.، 1394، استخراج و روندیابی رطوبت خاک با استفاده از داده¬های ماهواره¬ای سنجش از دور. پایان¬نامه کارشناسی ارشد. شاهرود: دانشگاه صنعتی شاهرود.
4. Chander, G., Markham, B.L., 2003 Revised Landsat-5 TM radiometric calibration procedures, and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41:2674–2677
5. Crow, W.T., Wood, E.F., and Dubayah, R., 2000, “Potential for downscaling soil moisture maps derived from spaceborne imaging radar data,” J. Geophys. Res.: Atmos., vol. 105, no. D2, pp. 2203–2212, Jan.
6. Das, N.N., Entekhabi, D., and Njoku, E.G., 2011, “An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1504–1512, Oct.
7. Dianjun, Z., Guoqing, J., 2016, Estimation of Soil Moisture from Optical and Thermal Remote Sensing. Sensors, 16, 1308; doi:10.3390/s16081308.
8.
9. ECV Production, Fusion of Soil Moisture Products: Algorithm Theoretical Baseline Document, Version 2.0, 2017
10. Hain, C.R., Mecikalski, J.R., and Anderson, M.C., 2009, “Retrieval of an available water-based soil moisture proxy from thermal infrared remote sensing. Part I: Methodology and validation,” J. Hydrometeorol., vol. 10, no. 3, pp. 665–683, Jun.
11. Holzman, M.E., Rivas, R., and Bayala, M., 2014, “Subsurface soil moisture estimation by VI-LST method,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 11, pp. 1951–1955, Nov.
12. Ikonen, J., Smolander, T., Rautiainen, K., Cohen, J., Lemmetyinen, J., Salminen, M., and Pulliainen, J., 2018, Spatially Distributed Evaluation of ESA CCI Soil Moisture Products in a Northern Boreal Forest Environment, Geosciences, 8, 51; doi:10.3390.
13. Laine, V., Martti, H., 1996, Estimation of surface albedo from NOAA AVHRR data in high latitudes. Tellus 48 A. 424-441
14. Leng, P. et al., 2014, “Bare surface soil moisture retrieval from the synergistic use of optical and thermal infrared data,” Int. J. Remote Sens., vol. 35, no. 3, pp. 988–1003, Feb.
15. Loew, A., Ludwig, R., and Mauser, W., 2006, “Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 4, pp. 889–899, Apr.
16. Mallick, K., Bhattacharya, B.K., and Patel, N., 2009, “Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI,” Agricultural Forest Meteorol., vol. 149, no. 8, pp. 1327–1342.
17. McNally A., Shukla S., Arsenault KR., Wang S., Peters-Lidard CD., Verdin JP., 2016, Evaluating ESA CCI soil moisture in East Africa, Earth Obs Geoinf. 2016 Jun;48:96-109. doi: 10.1016/j.jag.2016.01.001. Jan 21.
18. Njoku, E.G. et al., 2002, “Observations of soil moisture using a passive and active low frequency microwave airborne sensor during SGP99,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2659–2673, Dec.
19. Njoku, E.G. et al., 2003, “Soil moisture retrieval from AMSR-E,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 215–229, Feb.
20. Owe, M., de Jeu, R., and Holmes, T., 2008, “Multisensor historical climatology of satellite derived global land surface moisture,” J. Geophys. Res., Earth Surface, vol. 113, no. F1, Art. ID. F01002.
21. Peng, J., Loew, A., Zhang, S., Wang, J., and Niesel J., 2016, Spatial downscaling of satellite soil moisture data using a Vegetation Temperature Condition Index, IEEE Trans. Geosci. Remote Sens., 54(1), 558–566.
22. Peng, J., Niesel, J., Loew, A., Zhang, S., and Wang, J., 2015, Evaluation of satellite and reanalysis soil moisture products over southwest China using ground-based measurements, Remote Sens., 7(11), 15,729.
23. Petropoulos, G. P., T. N. Carlson, M. J. Wooster, and S. Islam, 2009, A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture, Prog. Phys. Geogr., 33(2), 224–250.
24. Piles, M. et al., 2011, “Downscaling SMOS-derived soil moisture using MODIS visible/infrared data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 9, pp. 3156–3166, Sep.
25. Price, J.C. 1984, Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research, 89
26. Rouse, J.W., Jr., Haas, R.H., Schell, J.A., and Deering, D.W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Paper presented at the 3rd ERTS-1 Symposium, Greenbelt, Maryland.
27. Rozenstein, O., Qin, Z., Derimian, Y., and Karnieli, A., 2014, Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4), 5768-5780.
28. Sadeghi, M.; Babaeian, E., Tuller, M., Jones, S.B, 2017, The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Remote Sensing of Environment 198, 52 –68.
29. Sandholt, I., Rasmussen, K., and Andersen, J., 2002, “A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status,” Remote Sens. Environ., vol. 79, no. 2/3, pp. 213–224.
30. Shunlin, L., 2000, Narrowband to broadband conversions of land surface albedo I Algorithms. Elsevier Science Inc. All rights reserved. PII: S0034-4257(00)00205-4.
31. Srivastava, P.K., 2017, Satellite Soil Moisture: Review of Theory and Applications in Water Resources, Water Resour Manage 31:3161–3176, DOI 10.1007/s11269-017-1722-6.
32. Sun, Y., Huang, S., Jianwei Ma, J., Jiren Li, J., Xiaotao Li, X., Hui Wang, H., Sheng Chen, S., and Wenbin Zang, W., 2017, Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data, Remote Sens. , 9(3), 292
33. Taylor, C.M. et al., 2012, “Afternoon rain more likely over drier soils,” Nature, vol. 489, no. 7416, pp. 423–426, Sep.
34. Tobler, W.R., 1970, A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234-240
35. Velpuri, N.M., Senay, G.B., Morisette, J.T., 2016, Evaluating New SMAP Soil Moisture for Drought Monitoring in the Rangelands of the US High Plains, Rangelands, Volume 38, Issue 4, Pages 183-190, ISSN 0190-0528,
36. Wan, Z., Wang, P., and Li, X., 2004, “Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA,” Int. J. Remote Sens., vol. 25, no. 1, pp. 61–72.
37. Wang, K., Li, Z., and Cribb, M., 2006, “Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter,” Remote Sens. Environ., vol. 102, no. 3/4, pp. 293–305, Jun.
38. Wigneron, J.P. et al., 2003, “Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans,” Remote Sens. Environ., vol. 85, no. 4, pp. 489–506, Jun.
39. Xin, J. et al., 2006, “Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China,” Int. J. Remote Sens., vol. 27, no. 10, pp. 2071–2075, May.