پلیمرها و حلال های مورداستفاده در ساخت غشاء: مروری متمرکز بر توسعه پایدار غشاء
الموضوعات :
1 - گروه علوم و مهندسی آب، دانشکده کشاورزی، مرکز آموزش عالی کاشمر، کاشمر، ایران
الکلمات المفتاحية: غشاهای پلیمری, حلال مشتق زیستی, جداسازی فاز ناشی از غیرحلال, ساخت غشاء, افزایش مقیاس,
ملخص المقالة :
فناوری غشایی به دلیل سهولت نسبی در ساخت و بهرهبرداری، نرخ گزینشپذیری بالا و عدم احیای جاذب، یک دهه در جداسازی مایع و گاز مورداستفاده شده است. غشاها را میتوان بر اساس ماده سنتز طبقهبندی کرد و به غشاهای آلی (پلیمری) و غیر آلی تقسیم میشوند. روشهای مختلفی برای ساخت غشاهای پلیمری با روش جداسازی فاز ناشی از حلال (Nonsolvent Induced Phase Separation) که یکی از پرکاربردترین آنها میباشد، استفاده شده است. در NIPS، یک حلال یا مخلوط حلال برای حل کردن یک پلیمر یا مخلوط پلیمری موردنیاز است. N متیل 2 پیرولدین (N-methyl-2-pyrrolidone)، دیمتیلاستامید (Dimethylacetamide)، دیمتیلفرمامید (Dimethylformamide) و سایر حلالهای مشتق شده از نفت معمولاً برای حل کردن برخی از پلیمرهای نفتی استفاده میشوند. با اینحال، این اجزاء ممکن است اثرات منفی بر محیطزیست و سلامت انسان داشته باشند. بنابراین، استفاده از اجزاء سبزتر و کمتر سمی برای افزایش پایداری ساخت غشاء از اهمیت بالایی برخوردار است. ساختار شیمیایی غشاها تحت تأثیر استفاده از حلالها، پلیمرهای مختلف یا تفاوت در مقیاس ساخت قرار نمیگیرد. از سوی دیگر، ساختار منافذ غشاء و زبری سطح میتواند به دلیل تفاوت در نرخهای انتشار مرتبط با انتشار حلالها/کمک حلالهای مختلف در غیرحلال و با تفاوت در زمان تبخیر تغییر کند. بنابراین، در این بررسی، حلالها و پلیمرهای دخیل در فرآیند ساخت غشاها پیشنهاد شدهاند که با جایگزینهای سبزتر/کمتر سمی جایگزین شوند. روشها و امکانسنجی تولید غشای پلیمری سبز نیز مورد بررسی قرار گرفت.
1. Figoli, A. Marino, T. Simone, S. Di Nicolo, E. Li, X.-M. He, T. Tornaghi, S. Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chemistryistry, 16, 4034–4059, 2014.
2. Clark, J.H. Tavener, S.J. Alternative Solvents: Shades of Green. Organic Process Research & Development, 11, 149–155, 2007.
3. Jessop, P.G. Searching for green solvents. Green Chemistry, 13, 1391–1398, 2011.
4. Capello, C. Fischer, U. Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry, 9, 927–934, 2007.
5. Clark, J.H. Farmer, T.J. Hunt, A.J. Sherwood, J. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 16, 17101–17159, 2015.
6. Gu, Y. Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42, 9550–9570, 2013.
7. Nie, L. Chuah, C.Y. Bae, T. Lee, J. Graphene-Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 31, 2006949, 2021.
8. Lau, W.J. Ismail, A.F. Progress in interfacial polymerization technique on composite membrane preparation. In Proceedings of the 2011 2nd International Conference on Environmental Engineering and Applications (ICEEA 2011), Shanghai, China, 19–21 August 2011.
9. Wong, C.Y. Wong, W.Y. Loh, K.S. Daud, W.R.W. Lim, K.L. Khalid, M. Walvekar, R. Development of Poly(Vinyl Alcohol)-Based Polymers as Proton Exchange Membranes and Challenges in Fuel Cell Application: A Review. Polymer Reviews, 60, 171–202, 2020.
10. Rosli, N.A.H. Loh, K.S. Wong, W.Y. Yunus, R.M. Lee, T.K. Ahmad, A. Chong, S.T. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. International Journal of Molecular Sciences, 21, 632, 2020.
11. Chen, M. Zhu, L. Chen, J. Yang, F. Tang, C.Y. Guiver, M.D. Dong, Y. Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169, 115180, 2020.
12. Gao, N. Fan, W. Xu, Z.-K. Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition. Separation and Purification Technology, 234, 116135, 2020.
13. Chong, J.Y. Wang, B. Li, K. High performance stainless steel-ceramic composite hollow fibres for microfiltration. Journal of Membrane Science, 541, 425–433, 2017.
14. Gao, X. Gao, B. Liu, H. Zhang, C. Zhang, Y. Jiang, J. Gu, X. Fabrication of stainless-steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds. Separation and Purification Technology. 2020, 234, 116121. Membranes, 11, 309, 21-25, 2021.
15. Filippov, A. Petrova, D. Falina, I. Kononenko, N. Ivanov, E. Lvov, Y. Vinokurov, V. Transport asymmetry of novel bi-layer hybrid perfluorinated membranes on the base of mf-4sc modified by halloysite nanotubes with platinum. Polymers, 10, 366, 2018.
16. Guillen, G.R. Pan, Y. Li, M. Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial and Engineering Chemistry Research, 50, 3798–3817, 2011.
17. Hausman, R. Digman, B. Escobar, I.C. Coleman, M. Chung, T.-S. Chung, N.T.-S. Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. Journal of Membrane Science, 363, 195–203, 2010.
18. Staiti, P. Lufrano, F. Arico, A. Passalacqua, E. Antonucci, V. Sulfonated polybenzimidazole membranes—Preparation and physico-chemical characterization. Journal of Membrane Science, 188, 71–78, 2001.
19. Kim, J. van der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 158, 2335–2349, 2010.
20. Mallevialle, J. Bersillon, J.L. Anselme, C. Aptel, P. Membrane Filtration in drinking-water treatment—A case story. In Influence and Removal of Organics in Drinking Water Mallevialle, J., Suffet, I.H., Chan, U.S., Eds. CRC Press: Boca Raton, FL, USA, 1992 pp. 299–310.
21. Pagliero, M. Bottino, A. Comite, A. Costa, C. Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation. Journal of Membrane Science, 596, 117575, 2020.
22. Dong, X. Al-Jumaily, A. Escobar, I.C. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes, 8, 23, 2018.
23. M’Barki, O. Hanafia, A. Bouyer, D. Faur, C. Sescousse, R. Delabre, U. Blot, C. Guenoun, P. Deratani, A. Quemener, D. et al. Greener method to prepare porous polymer membranes by combining thermally induced phase separation and crosslinking of poly(vinyl alcohol) in water. Journal of Membrane Science, 458, 225–235, 2014.
24. Lei, B. Shin, K.-H. Noh, D.-Y. Jo, I.-H. Koh, Y.-H. Choi, W.-Y. Kim, H.-E. Nanofibrous gelatin—Silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. Journal of Materials Chemistry, 22, 14133–14140, 2012.
25. Zahid, M. Rashid, A. Akram, S. Rehan, Z.A. Razzaq, W. A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. Journal of Membrane Science and Technology, 8, 1–20, 2018.
26. Zhao, Q. Xie, R. Luo, F. Faraj, Y. Liu, Z. Ju, X.-J. Wang, W. Chu, L.-Y. Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. Journal of Membrane Science, 549, 151–164, 2018.
27. Pervin, R. Ghosh, P. Basavaraj, M.G. Tailoring pore distribution in polymer films via evaporation induced phase separation. RSC Advancesances, 9, 15593–15605, 2019.
28. Samuel, A.Z. Umapathy, S. Ramakrishnan, S. Functionalized and Postfunctionalizable Porous Polymeric Films through Evaporation-Induced Phase Separation Using Mixed Solvents. ACS Applied Materials & Interfaces, 3, 3293–3299, 2011.
29. Ismail, N. Venault, A. Mikkola, J.-P. Bouyer, D. Drioli, E. Kiadeh, N.T.H. Investigating the potential of membranes formed by the vapor induced phase separation process. Journal of Membrane Science, 597, 117601, 2020.
30. Lu, W. Yuan, Z. Zhao, Y. Zhang, H. Zhang, H. Li, X. Porous membranes in secondary battery technologies. Chemical Society Reviews, 46, 2199–2236, 2017.
31. Kim, J.F. Kim, J.H. Lee, Y.M. Drioli, E. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE Journal, 62, 461–490, 2016.
32. Khare, V.P. Greenberg, A.R. Krantz, W.B. Vapor-induced phase separation—Effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling. Journal of Membrane Science, 258, 140–156, 2005.
33. Chen, Z. Deng, M. Chen, Y. He, G. Wu, M. Wang, J. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. Journal of Membrane Science, 235, 73–86, 2004.
34. Sivakumar, M. Mohan, D.R. Rangarajan, R. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science, 268, 208–219, 2006.
35. Kutowy, O. Sourirajan, S. Cellulose acetate ultrafiltration membranes. Journal of Applied Polymer Science, 19, 1449–1460, 1975.
36. Haddada, R. Ferjani, E. Roudesli, M.S. Deratani, A. Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination. Desalination, 167, 403–409, 2004.
37. Duarte, A.P. Cidade, M.T. Bordado, J.C. Cellulose acetate reverse osmosis membranes: Optimization of the composition. Journal of Applied Polymer Science, 100, 4052–4058, 2006.
38. Idris, A. Yet, L.K. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 280, 920–927, 2006.
39. Zhao, C. Xue, J. Ran, F. Sun, S. Modification of polyethersulfone membranes—A review of methods. Progress in Materials Science, 58, 76–150, 2013.
40. Otitoju, T.A. Ahmad, A.L. Ooi, B.S. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Advancesances, 8, 22710–22728, 2018.
41. van der Bruggen, B. Chemical modification of polyethersulfone nanofiltration membranes: A review. Journal of Applied Polymer Science, 114, 630–642, 2009.
42. Liu, F. Hashim, N.A. Liu, Y. Abed, M.M. Li, K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375, 1–27, 2011.
43. Eykens, L. de Sitter, K. Dotremont, C. Pinoy, L. van der Bruggen, B. Membrane synthesis for membrane distillation: A review. Separation and Purification Technology, 182, 36–51, 2017.
44. Alkhudhiri, A. Darwish, N. Hilal, N. Membrane distillation: A comprehensive review. Desalinatio, 287, 2–18, 2012.
45. Kang, G.-D. Cao, Y.-M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. Journal of Membrane Science, 463, 145–165, 2014.
46. Colburn, A. Vogler, R.J. Patel, A. Bezold, M. Craven, J. Liu, C. Bhattacharyya, D. Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects. Nanomaterials, 9, 867, 2019.
47. Galiano, F. Briceño, K. Marino, T. Molino, A. Christensen, K.V. Figoli, A. Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 564, 562–586, 2018.
48. Le Phuong, H.A. Ayob, N.A.I. Blanford, C.F. Rawi, N.F.M. Szekely, G. Nonwoven Membrane Supports from Renewable Resources: Bamboo Fiber Reinforced Poly(Lactic Acid) Composites. ACS Sustainable Chemistry & Engineering, 7, 11885–11893, 2019.
49. Esfahani, M.R. Taylor, A. Serwinowski, N. Parkerson, Z.J. Confer, M.P. Kammakakam, I. Bara, J.E. Esfahani, A.R. Mahmoodi, S.N. Koutahzadeh, N. et al. Sustainable Novel Bamboo-Based Membranes for Water Treatment Fabricated by Regeneration of Bamboo Waste Fibers. ACS Sustainable Chemistry & Engineering, 8, 4225–4235, 2020.
50. Clasen, C. Wilhelms, A.T. Kulicke, W.-M. Formation and Characterization of Chitosan Membranes. Biomacromolecules, 7, 3210–3222, 2006.
51. Ray, M. Pal, K. Anis, A. Banthia, A.K. Development and Characterization of Chitosan-Based Polymeric Hydrogel Membranes. Designed Monomers and Polymers, 13, 193–206, 2010.
52. Thakur, V.K. Voicu, S.I. Recent advances in cellulose and chitosan-based membranes for water purification: A concise review. Carbohydrate Polymers, 146, 148–165, 2016.
53. Gaur, S.S. Dhar, P. Sonowal, A. Sharma, A. Kumar, A. Katiyar, V. Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications. Journal of Membrane Science, 526, 348–354, 2017.
54. Baig, M.I. Durmaz, E.N. Willott, J.D. De Vos, W.M. Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation. Advanced Functional Materials, 30, 1907344, 2019.
55. Goh, P.S. Wong, T.W. Lim, J.W. Ismail, A.F. Hilal, N. Innovative and Sustainable Membrane Technology for Wastewater Treatment and Desalination Application. In Innovation Strategies in Environmental Science Elsevier: Amsterdam, The Netherlands, pp. 291–319, 2020.
56. Zhu, Y. Romain, C. Williams, Y.Z.C.K. Sustainable polymers from renewable resources. Nature Cell Biology, 540, 354–362, 2016.
57. Lee, D.W. Lim, H. Na Chong, H. Shim, W.S. Advances in Chitosan Material and its Hybrid Derivatives: A Review. Open Biomaterials Journal, 1, 10–20, 2009.
58. Rathke, T.D. Hudson, S.M. Review of Chitin and Chitosan as Fiber and Film Formers. Journal of Macromolecular Science, Part C, 34, 375–437, 1994.
59. King, C. Shamshina, J.L. Gurau, G. Berton, P. Khan, N.F.A.F. Rogers, R.D. A platform for more sustainable chitin films from an ionic liquid process. Green Chemistry, 19, 117–126, 2016.
60. Silva, S.S. Mano, J.F. Reis, R.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 19, 1208–1220, 2017.
61. Galvis-Sánchez, A.C. Sousa, A.M.M. Hilliou, L. Gonçalves, M.P. Souza, H.K.S. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chemistry, 18, 1571–1580, 2015.
62. Sanjari, A.J. Asghari, M. A Review on Chitosan Utilization in Membrane Synthesis. ChemBioEng Reviews, 3, 134–158, 2016.
63. Lieder, R. Darai, M. Orlygsson, G. Sigurjonsson, O.E. Solution casting of chitosan membranes for in vitro evaluation of bioactivity. Biological process, 15, 11, 2013.
64. Ma, B. Li, X. Qin, A. He, C. A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid. Carbohydrate Polymers, 91, 477–482, 2013.
65. Ratcliffe, A. Baker, A. Smith, D. Successful management of 70% acetic acid ingestion on the intensive care unit: A case report. Journal of the Intensive Care Society, 19, 56–60, 2018.
66. Cui, L. Gao, S. Song, X. Huang, L. Dong, H. Liu, J. Chen, F. Yu, S. Preparation and characterization of chitosan membranes. RSC Advances, 8, 28433–28439, 2018.
67. Smyth, H.F., Jr. Carpenter, C.P. Weil, C.S. Pozzani, U.C. Striegel, J.A. Nycum, J.S. Range-finding toxicity data: List VII. Am. American Industrial Hygiene Association Journal, 30, 470–476, 1996.
68. Smallwood, I. Handbook of Organic Solvent Properties Butterworth-Heinemann: Oxford, UK, 2012. 69. Gold, R. Phillips, J.T. Havrdova, E. Bar-Or, A. Kappos, L. Kim, N. Thullen, T. Valencia, P. Oliva, L. Novas, M. et al. Delayed-Release Dimethyl Fumarate and Pregnancy: Preclinical Studies and Pregnancy Outcomes from Clinical Trials and Postmarketing Experience. Neurology and Therapy, 4, 93–104, 2015.
70. Razali, M. Kim, J.F. Attfield, M.P. Budd, P.M. Drioli, E. Lee, Y.M. Szekely, G. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chemistry, 17, 5196–5205, 2015.
71. Medina-Gonzalez, Y. Aimar, P. Lahitte, J.-F. Remigy, J.-C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. International Journal of Sustainable Engineering, 4, 75–83, 2011.
72. AlQaheem, Y. Alomair, A. Alhendi, A. Alkandari, S. Tanoli, N. Alnajdi, N. Quesada-Perez, A. Preparation of polyetherimide membrane from non-toxic solvents for the separation of hydrogen from methane. Chemistry Central Journal, 12, 80, 2018.
73. Wang, J.-H. Zhang, Y.-H. Xu, Y.-Y. Zhu, B.-K. Xu, H. Fabrication of hydrophilic and sponge-like PVDF/brush-like copolymer blend membranes using triethylphosphate as solvent. Chinese Journal of Polymer Science, 32, 143–150, 2014.
74. Tao, M.-M. Liu, F. Ma, B.-R. Xue, L.-X. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination, 316, 137–145, 2013.
75. Chang, J. Zuo, J. Zhang, L. O’Brien, G.S. Chung, T.-S. Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. Journal of Membrane Science, 539, 295–304, 2017.
76. Karkhanechi, H. Vaselbehagh, M. Jeon, S. Shaikh, A.R. Wang, D.-M. Matsuyama, H. Preparation and characterization of polyvinylidenedifluoride-co-chlorotrifluoroethylene hollow fiber membranes with high alkaline resistance. Polyme, 145, 310–323, 2018.
77. Paerl, H.W. Whitall, D.R. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link? Ambio, 28, 307–311, 1999.
78. Heisler, J. Glibert, P. Burkholder, J. Anderson, D. Cochlan, W. Dennison, W. Dortch, Q. Gobler, C. Heil, C. Humphries, E. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13, 2008.
79. Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Advanced Chemistry, 2014, 729842, 2014.
80. Rogers, R.D. Seddon, K.R. Ionic liquids—Solvents of the future? Science, 302, 792–793, 2003.
81. Earle, M.J. Seddon, K.R. Ionic liquids: Green solvents for the future. In Pure and Applied Chemistry ACS Publications: Washington, DC, USA, p. 1391, 2000.
82. Heym, F. Haber, J. Korth, W. Etzold, B.J.M. Jess, A. Vapor Pressure of Water in Mixtures with Hydrophilic Ionic Liquids—A Contribution to the Design of Processes for Drying of Gases by Absorption in Ionic Liquids. Chemical Engineering and Technology, 33, 1625–1634, 2010.
83. Dai, C. Sui, X. Lei, Z. Vapor pressure measurements and predictions for the binary systems containing ionic liquid [EMIM][BF 4] and formic acid/acetic acid. Journal of Molecular Liquids, 256, 471–479, 2018.
84. Tomida, D. Tani, Y. Qiao, K. Yokoyama, C. Vapor pressure and liquid density of 1-butyl-3-methylimidazolium hexafluorophosphate and ammonia mixtures. High temperatures-high pressures, 47, 101–116, 2018.
85. Cichowska-Kopczy nska, I. Joskowska, M. D ˛ebski, B. Luczak, J. Aranowski, R. Influence of Ionic Liquid Structure on Supported Ionic Liquid Membranes Effectiveness in Carbon Dioxide/Methane Separation. Journal of Chemistry, 932863, 2013.
86. Xing, D.Y. Chan, S.Y. Chung, T.-S. Molecular interactions between polybenzimidazole and [EMIM]OAc, and derived ultrafiltration membranes for protein separation. Green Chemistry, 14, 1405–1412, 2012.
87. Xing, D.Y. Dong, W.Y. Chung, T.-S. Effects of Different Ionic Liquids as Green Solvents on the Formation and Ultrafiltration Performance of CA Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 55, 7505–7513, 2016.
88. Colburn, A. Wanninayake, N. Kim, D. Bhattacharyya, D. Cellulose-graphene quantum dot composite membranes using ionic liquid. Journal of Membrane Science, 556, 293–302, 2018.
89. Romero, A. Santos, A. Tojo, J. Rodriguez, A. Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials, 151, 268–273, 2008.
90. Docherty, K.M. Kulpa, J.C.F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7, 185–189, 2005.
91. Pham, T.P.T. Cho, C.-W. Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review. Water Research, 44, 352–372, 2010.
92. Ventura, S.P.M. Gonçalves, A.M.M. Sintra, T. Pereira, J.L. Gonçalves, F. Coutinho, J.A.P. Designing ionic liquids: The chemical structure role in the toxicity. Ecotoxicology, 22, 1–12, 2012.
93. Rasool, M.A. Pescarmona, P.P. Vankelecom, I.F.J. Applicability of Organic Carbonates as Green Solvents for Membrane Preparation. ACS Sustainable Chemistry & Engineering, 7, 13774–13785, 2019.
94. Hassankiadeh, N.T. Cui, Z. Kim, J.H. Shin, D.W. Lee, S.Y. Sanguineti, A. Arcella, V. Lee, Y.M. Drioli, E. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. Journal of Membrane Science, 479, 204–212, 2015.
95. Jung, J.T. Kim, J.F. Wang, H.H. di Nicolo, E. Drioli, E. Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 514, 250–263, 2016.
96. Marino, T. Blasi, E. Tornaghi, S. Di Nicolo, E. Figoli, A. Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. Journal of Membrane Science, 549, 192–204, 2018.
97. Randová, A. Bartovská, L. Morávek, P. Matˇejka, P. Novotná, M. Matˇejková, S. Drioli, E. Figoli, A. Lanˇc, M. Friess, K. A fundamental study of the physicochemical properties of Rhodiasolv®Polarclean: A promising alternative to common and hazardous solvents. Journal of Molecular Liquids, 224, 1163–1171, 2016.
98. Alonso, D.M. Wettstein, S.G. Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15, 584–595, 2013.
99. Girisuta, B. Janssen, A.L.P.B.M. Heeres, H.J. Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid. Industrial and Engineering Chemistry Research, 46, 1696–1708, 2007.
100. Girisuta, B. Janssen, L.P.B.M. Heeres, H.J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chemistry, 8, 701–709, 2006.
101. Rasool, M.A. Vankelecom, I.F. Use of γ-valerolactone and glycerol derivatives as bio-based renewable solvents for membrane preparation. Green Chemistry, 21, 1054–1064, 2019.
102. Dong, X. Shannon, H.D. Escobar, I.C. Investigation of Polarclean and Gamma-Valerolactone as Solvents for Polysulfone Membrane Fabrication. In Green Polymer Chemistry: New Products, Processes, and Applications American Chemical Society: Washington, DC, USA, pp. 385–403, 2018.
103. Dong, X. Shannon, H.D. Parker, C. De Jesus, S. Escobar, I.C. Comparison of two low-hazard organic solvents as individual and cosolvents for the fabrication of polysulfone membranes. AIChE Journal, 66, 16790, 2020.
104. Hołda, A.K. Vankelecom, I.F. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science, 132, 2015.
105. Hołda, A.K. Aernouts, B. Saeys, W. Vankelecom, I.F. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. Journal of Membrane Science, 442, 196–205, 2013.
106. Hendrix, K. Koeckelberghs, G. Vankelecom, I.F. Study of phase inversion parameters for PEEK-based nanofiltration membranes. Journal of Membrane Science, 452, 241–252, 2014.
107. Ren, J. Zhou, J. Deng, M. Morphology transition of asymmetric flat sheet and thickness-gradient membranes by wet phaseinversion process. Desalination, 253, 1–8, 2010.
108. Chede, S. Griffiths, P. Escobar, I.C. Harris, T.A.L. Does casting method matter in filtration membranes? A comparison in performance between doctor blade and slot-die extruded polymeric membranes. Journal of Applied Polymer Science, 135, 45563, 2018.
109. Bucher, T. Filiz, V. Abetz, C. Abetz, V. Formation of Thin, Isoporous Block Copolymer Membranes by an Upscalable Profile Roller Coating Process—A Promising Way to Save Block Copolymer. Membrane, 8, 57, 2018.
110. Lakshmi, D.S. Cundari, T. Furia, E. Tagarelli, A. Fiorani, G. Carraro, M. Figoli, A. Preparation of Polymeric Membranes and Microcapsules Using an Ionic Liquid as Morphology Control Additive. Macromolecular Symposia, 357, 159–167, 2015.
111. Dong, X. Jeong, T.J. Kline, E. Banks, L. Grulke, E. Harris, T. Escobar, I.C. Eco-friendly solvents and their mixture for the fabrication of polysulfone ultrafiltration membranes: An investigation of doctor blade and slot die casting methods. Journal of Membrane Science, 614, 118510, 2020.
112. Soroko, I. Lopes, M.P. Livingston, A. The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice. Journal of Membrane Science, 381, 152–162, 2011.
113. Ayman, E.G. Heba, A. Sahar, A. Construction of ternary phase diagram and membrane morphology evaluation for polyamide/formic acid/water system. Australian Journal of Basic and Applied Sciences, 6, 62–68, 2012.
114. Wang, H.H. Jung, J.T. Kim, J.F. Kim, S. Drioli, E. Lee, Y.M. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of Membrane Science, 574, 44–54, 2019.
115. Mazinani, S. Darvishmanesh, S. Ehsanzadeh, A. van der Bruggen, B. Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology. Journal of Membrane Science, 526, 301–314, 2017.
116. Kahrs, C. Gühlstorf, T. Schwellenbach, J. Influences of different preparation variables on polymeric membrane formation via nonsolvent induced phase separation. Journal of Applied Polymer Science, 137, 48852, 2020.
117. Yadav, P. Ismail, N. Essalhi, M. Tysklind, M. Athanassiadis, D. Tavajohi, N. Assessment of the environmental impact of polymeric membrane production. Journal of Membrane Science, 622, 118987, 2021.
118. Martins, A.A. Caetano, N.S. Mata, T.M. LCA for Membrane Processes. In Green Chemistryistry and Sustainable Technology Springer: Singapore, pp. 23–66, 2017.
119. Xie, W. Li, T. Chen, C. Wu, H. Liang, S. Chang, H. Liu, B. Drioli, E. Wang, Q. Crittenden, J.C. Using the Green Solvent Dimethyl Sulfoxide to Replace Traditional Solvents Partly and Fabricating PVC/PVC-g-PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection. Journal of Industrial and Engineering Chemistry, 58, 6413–6423, 2019.
120. Bhamidipati, K.L. Didari, S. Harris, T.A. Slot die coating of polybenzimiazole based membranes at the air engulfment limit. Journal of Power Sources, 239, 382–392, 2013.
121. Phillips, A. Ulsh, M. Mackay, J. Harris, T. Shrivastava, N. Chatterjee, A. Porter, J. Bender, G. The effect of membrane casting irregularities on initial fuel cell performance. Fuel Cells 2020, 20, 60–69.
122. Ding, X. Liu, J. Harris, T.A.L. A review of the operating limits in slot die coating processes. AIChE Journal, 62, 2508–2524, 2016.
123. Huang, B.-J. Guan, C.-K. Huang, S.-H. Su, W.-F. Development of once-through manufacturing machine for large-area Perovskite solar cell production. Solar Energy, 205, 192–201, 2020.
124. Aegerter, M.A. Mennig, M. (Eds.) Doctor blade. In Sol-Gel Technologies for Glass Producers and Users Springer: Berlin/Heidelberg, Germany, pp. 89–92, 2004.
125. de Kergommeaux, A. Fiore, A. Faure-Vincent, J. Pron, A. Reiss, P. Colloidal CuInSe 2 nanocrystals thin films of low surface roughness. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 015004, 2013.
126. Wang, C.F. An, Y. Li, Q.H. Wan, S.J. Chen, W.X. Liu, X.D. Nonsolvent Effects on Morphology of Cellulose Acetate Films Prepared by Dry-Cast Process. Journal of Macromolecular Science, Part B, 51, 2266–2275, 2012.
127. Bhamidipati, K. Didari, S. Harris, T.A. Experimental Study on Air Entrainment in Slot Die Coating of High-Viscosity, ShearThinning Fluids. Chemical Engineering Science, 80, 195–204, 2012.
128. Chede, S. Anaya, N.M. Oyanedel-Craver, V. Gorgannejad, S. Harris, T.A. Al-Mallahi, J. Abu-Dalo, M. Abu Qdais, H. Escobar, I.C. Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication. Desalinatio, 451, 81–91, 2019.
129. Ruschak, K.J. Limiting flow in a pre-metered coating device. Chemical Engineering Science, 31, 1057–1060, 1976.
130. Bhamidipati, K.L. Detection and Elimination of Defects during Manufacture of high-Temperature Polymer Electrolyte Membranes. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2011.