WSTMOS: روشی جهت بهینه سازی توان عملیاتی، انرژی و تاخیر در زمانبندی جریان های کاری ابری
الموضوعات :آرش قربان نیا دلاور 1 , رضا اکرمی نژاد 2 , سحر مظفری 3
1 - دانشکده فنی و مهندسی گروه کامپیوتر دانشگاه پیام نور تهران
2 - پیام نور
3 - پیام نور
الکلمات المفتاحية: زمانبندی, محاسبات ابری, متعادلسازی بار, انرژی, هزینه, پردازش دستهای, توان عملیاتی,
ملخص المقالة :
استفاده از رایانش ابری در مراکز داده مختلف در سراسر دنیا، منجر به تولید بیشتر گاز دیاکسیدکربن میشود، که در آن مسئله انرژی و توان یکی از مسائل مهم میباشد. الگوریتم آگاه به انرژی و توان عملیاتی برای زمانبندی جریانهای کاری نمونه - فشرده اینترنت اشیا با پردازش دستهای در ابرها مورد مطالعه قرارگرفته و روشی جهت زمانبندی جریانهای کاری ابری برای بهینه سازی انرژی، توان عملیاتی و تاخیر ارائه شده است. در روش پیشنهادی نسبت به روش قبلی با ایجاد پارامترهای فاصله، دستهبندی ورودیها و همچنین زمان اجرای واقعی، توان عملیاتی، انرژی و تاخیر را بهبود دادهایم. روش WSTMOS با درنظرگرفتن پارامترهای شاخص و زمان واقعی، به تابع صلاحیت بهینهای دست یافته است. همچنین روش پیشنهادی پارامتر فاصله زمانی وظیفه، نسبت به ماشینهای مجازی برای کاهش تعداد مهاجرتهای ماشینهای مجازی، استفاده شده است. روش WSTMOS با دستهبندی ورودیهای جریان کاری به گروههای کم، متوسط و پرحجم و همچنین توزیع بار مناسب بر روی سرورهای مناسبتر جهت آستانه پردازندهها، میزان انرژی و هزینه را بهینه نموده و همچنین میزان مصرف انرژی به طور میانگین 4.8 درصد و هزینه 4.4 درصد، نسبت به روش مورد مطالعه کاهش یافته و درنهایت میانگین تأخیر، توان و بار کاری نسبت به روشهای قبلی بهینه شده است.
[1] م. نیکسرشت، م. راجی، "یک الگوریتم زمانبندی وظیفه چندهدفه بر اساس الگوریتم ژنتیک برای طراحی سیستمهای نهفته" ، دوفصلنامه علمی فناوری اطلاعات و ارتباطات ایران، شماره 47 و 48، صفحه 186-197
[2] W. Dou, X. Xu, . S. Meng, . X. Zhang, . C. Hu, . S. Yu and . J. Yang, "An energy-aware virtual machine scheduling method for service QoS enhancement in clouds over big data." Concurr. Comput. Pract, p. Exp, vol. 29 e3909, 2016.
[3] A. Ghorbannia Delavar and . Y. Aryan, "HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems." Cluster Comput (2014) 17, p. 129–137, 2013.
[4] N. J. Kansal and I. Chana, "Energy-aware Virtual Machine Migration for Cloud Computing .A Firefly Optimization Approach." Grid Computing, vol. 14, pp. 327-345, 2016.
[5] A. Mosa and N. W. Paton, "Optimizing virtual machine placement for energy and SLA in clouds using utility functions." Journal of Cloud Computing, vol. 5, no. 1, 2016.
[6] G. Portaluri, D. Adami, A. Gabbrielli and S. Giordano, "Power Consumption-Aware Virtual Machine Placement in Cloud Data Center." IEEE Transactions on Green Communications and Networking, vol. 1, no. 4, pp. 541-550, 2017.
[7] L. Pufahl, "Modeling and Executing Batch Activities in Business Processes (Ph.D. thesis)." 2018.
[8] L. Pufahl and D. Karastoyanova, "Enhancing Business Process Flexibility by Flexible Batch Processing." pp. 426-444, 2018.
[9] L. Pufahl, "Modeling and executing batch activities in business processes." 2018.
[10] V. Seethalakshmi, V. Govindasamy, V. Akila, G. Sivaranjini, K. Sindhuja and K. Prasanth, "A Survey Of Different Workflow Scheduling Algorithms In Cloud Computing." 2019.
[11] H. C. Y. T. S. Y. Xiaojun Ruan, "Virtual machine allocation and migration based on performance-to-power ratio in energy-efficient clouds." Future Generation Computer Systems, p. https://doi.org/10.1016/j.future.2019.05.036, 2019.
[12] M. Hussain, L.-F. Wei, A. Lakhan, S. Wali, S. Ali and A. Hussaina, "Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing." Sustainable Computing: Informatics and Systems, vol. 30, 2021.
[13] D. Sun, S. Gao, L. Xunyun, Y. Xindong and B. Rajkumar, "Dynamic redirection of real-time data streams for elastic stream." Future Generation Computer Systems, vol. 112, p. 193–208, 2020.
[14] Y. Wang, Z.-h. Jia and K. Li, "A multi-objective co-evolutionary algorithm of scheduling on parallel non-identical batch machines." Expert Systems With Applications,no. https://doi.org/10.1016/j.eswa.2020.114145, 2020.
[15] S. Taherizadeh and M. Grobelnik, "Key influencing factors of the Kubernetes auto-scaler for computingintensive microservice-native cloud-based applications." Advances in Engineering Software, vol. 140, 2020.
[16] B. Everman, M. Gao and Z. Zong, "Evaluating and reducing cloud waste and cost. A data-driven case study from Azure workloads." Sustainable Computing: Informatics and Systems, vol. 35, 2022.
[17] Yiping Wen, Zhibin Wang, Yu Zhang, Jianxun Liu, Buqing Cao and Jinjun Chen, "Energy and cost aware scheduling with batch processing for instance-intensive IoT workflows in clouds." vol. 101, pp. 39-50, 2019.
[18] R. medara and R. S. Singh, "A Review on Energy-Aware Scheduling Techniques for Workflows in IaaS Clouds." Wireless Personal Communications, vol. 116, 2022.