مطالعۀ ایزوتوپهای پایدار کربن و اکسیژن در نهشتۀ تراورتن مجدر در جنوب شرق اردبیل
الموضوعات :
1 - محقق اردبیلی
الکلمات المفتاحية: ایزوتوپ پایدار, تراورتن, ترموژن, مجدر,
ملخص المقالة :
کربناتهای آب شیرین از نظر ویژگیهای ژئوشیمیایی و ایزوتوپی با یکدیگر متفاوت هستند. مطالعۀ ایزوتوپهای پایدار کربن و اکسیژن یکی از مهمترین ابزارهای مطالعاتی کربناتها از جمله نهشتههای تراورتن است. در گسترۀ مجدر که بر روی کمربند زمین ساختی البرز غربی- آذربایجان قرار دارد، نهشتههایی از تراورتن به سن کواترنر در واحدهای آتشفشانی آندزیت پورفیری به سن ائوسن قرار میگیرند. تراورتنها بر اساس مطالعات کانیشناسی بهطورکلی از آراگونیت تشکیل یافتهاند. مقادیر میانگین ایزوتوپهای δ13C و δ18O در تراورتنهای پهنه مورد مطالعه به ترتیب در محدودۀ ‰ 47/6+ و ‰ 77/8- قرار داشته و نشاندهندۀ منشأ ترموژن تراورتنهای گسترۀ مجدر است. همچنین مقدار میانگین δ13C(CO2) معادل ‰ 73/2- محاسبه شده است و منشأ غیرآلی و درونزادی برای CO2 پیشنهاد میکند. تصور میشود سیالات گرمابی غنی از CO2 پس از چرخش درون واحد آهکی موجود در پهنه و واکنش با آن، یون بیکربنات کلسیم لازم برای تشکیل تراورتن را فراهم کردهاند. سپس این سیالات از طریق سیستم-های گسلی موجود در ناحیه به بالا صعود کرده و در سطح نهشتههای تراورتن را برجای گذاشتهاند.
آدابی، م.، ح.، 1390. ژئوشیمی رسوبی. انتشارات آرین زمین، چاپ دوم، 476.
- آقانباتی، س.ع.، 1383. زمینشناسی ايران. انتشارات سازمان زمینشناسی و اكتشافات معدنی کشور، 586.
- امامی، م.ه.، 1379. ماگماتیسم در ایران. سازمان زمینشناسی و اکتشافات معدنی کشور، 622.
- حاجیعلیلو، ب. و رضایی، ج.، 1380. نقشۀ زمینشناسی 1:100،000 کیوی. سازمان زمینشناسی و اكتشافات معدنی کشور.
- تقیپور، ک.، خطیب، م.م.، هیهات، م.ر.، واعظی هیر، ع. و شبانیان، ا.، 1398. نقش کنترلکنندههای ساختاری در هیدروژئوشیمی چشمههای تراورتنساز منطقه آذرشهر، آذربايجان، شمال باختر ايران. زمینشناسی ایران، 13(52)، 121-105.
- تقیپور، ک. و محجل، م.، 1392. ساختار و نحوه تشكيل پشتههاى تراورتن در منطقه آذرشهر، آذربايجان، شمال باختر ايران. زمینشناسی ایران، 7(25)، 15-33.
- صالحی، ل. و محمدی سیانی، م.، 1392. مطالعات ژئوشیمیایی ایزوتوپ پایدار کربن و اکسیژن در نهشتههای تراورتن محلات (جنوب شرق اراک). زمینشناسی ایران، 7(21)، 31-40.
- Berardi, G., Vignaroli, G., Billi, A., Rossetti, F., Soligo, M., Kele, S., Baykara, M., Bernasconi, S.M., Castorina, F., Tecce, F. and Shen, C., 2016. Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy: Estimate of CO2 leakage. Tectonophysics, 690, 219–239.
- Blavoux, B., Dazy, J. and Sarrot, J., 1982. Information about the origin of thermomineral waters and gas by means of environmental isotopes in eastern Azerbaijan, Iran, and southeast France. Journal of Hydrology, 56, 23–38.
- Brogi, A. and Capezzuolli, E., 2009. Travertine deposition and faulting: the fault-related travertine fissureridge at Terme S. Giovanni, Rapolano Terme (Italy). International Journal of Earth Sciences, 98, 931–947.
- Caracausi, A., Paternoster, M. and Nuccio, P.M., 2015. Mantle CO2 degassing at Mt. Vulture Volcano (Italy): relationship between CO2 outgassing of volcanoes and the time of their last eruption. Earth and Planetary Science Letter, 411, 268–280.
- Deines, P., Langmuir, D. and Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochimica et Cosmochimica Acta 38, 7, 1147–1164.
- Dreybrodt, W., Buhmann, D., Michaelis, J. and Usdowski, E., 1992. Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions. Chemical Geology, 97, 3-4, 285–294.
- Fouke, B.W., 2011. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth hot springs, Yellowstone National Park, USA. Sedimentology, 58, 1, 170–219.
- Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C. and Discipulo, M.K., 2000. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). Sedimentary Research, 70, 3, 565–585.
- Fournier, R.O., 1989. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annual Review of Earth and Planetary Sciences, 17, 13–53.
- Fritz, P., 1968. Der Isotopengehalt der Mineralwasserquellen von Stuttgart und Umgebung und ihrer ittel pleistozaenen Travertin-Ablagerungen. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 50, 53–69.
- Hoefs, J., 2009. Stable Isotope Geochemistry. 6th Edition. Berlin, Germany: Springer-Verlag. 286.
- Hoefs, J., 2004. Stable Isotope Geochemistry. 5th Edition. Berlin, Germany: Springer-Verlag. 244.
- Ibrahim, K.M., Makhlouf, I.M., El Naqah, A.R. and Al-Thawabteh, S.M., 2017. Geochemistry and stable isotopes of travertine from Jordan Valley and Dead Sea areas, Minerals, 7, 5, 82–98.
- Jamtveit, B., Hammer, Ø., Andersson, C., Dysthe, D.K., Heldmann, J. and Vogel, M.L., 2006. Travertines from the Troll thermal springs, Svalbard. Norwegian. Journal of Geology, 86, 387–395.
- Janssen, A., Swennen, R., Podoor, N. and Keppens, E., 1999. Biological and diagenetic influence in recent and fossil tuffa from Belgium. Sedimentary Geology, 126, 74–95.
- Jones, B. and Renaut, R.W., 2010. Calcareous spring deposits in continental settings. In: Developments in Sedimentology. In: Alonso-Zarza A. M. and Tanner L.H. (Eds.) Carbonates in Continental Settings: Facies, Environments and Processes, Elsevier, Amsterdam, 177–224.
- Karaisaoglu, S. and Orhan, H., 2018. Sedimentology and geochemistry of the Kavakköy Travertine (Konya, central Turkey). Carbonates and Evaporites, 33, 3, 783–800.
- Kele, S., Özkul M. and Fórizs I., 2011. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation. Sedimentary Geology, 238, 1-2, 191–212.
- Kele, S., Demény, A., Siklósy, Z., Németh, T., Tóth, M. and Kovács, M.B., 2008. Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sedimentary Geology, 211, 3-4, 53–72.
- Kele, S., Vaselli O., Szabó C. and Minissale, A., 2003. Stable isotope geochemistry of Pleistocene travertine from Budakalász (Buda Mts, Hungary). Acta Geologica Hungarica, 46, 2, 161–175.
- Lescuyer, J.L. and Riou, R., 1976. Géologie de la région de Mianeh (Azerbaidjan). Contribution à ľ étude du volcanisme tértiaire de ľ Iran. Thèse 3 ème cycle. Grenoble, 233.
- Lotfi Bakhsh, A., 2019. Characteristics of supergene alteration in Binamar Area, Ardabil, NW Iran. Journal of Multidisciplinary Engineering Science Studies, 5, 3, 2535–2539.
- Lotfi Bakhsh, A., 2018. Mineralogy and geochemical characteristics of the propylitic alteration in Mejdar Area, Ardabil, NW Iran. Journal of Multidisciplinary Engineering Science Studies, 4, 12, 2330–2335.
- Milivojevic, M., 2003. Carbogaseous mineral water in Serbia and BiH as indicator of deep hydrogeothermal resources. International Geothermal Association, European Geothermal Conference, Szeged, 1-8.
- Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141.
- Mohammadi, Z., Claes, H., Capezzuoli, E., Mozafari, M., Soete, J., Aratman, C. and Swennen, R., 2020. Lateral and vertical variations in sedimentology and geochemistry of sub-horizontal laminated travertines (Çakmak quarry, Denizli Basin, Turkey). Quaternary International, 540, 146–168.
- Panichi, C. and Tongiorgi, E., 1976. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. Proceedings of the 2nd U.N. Symposium on Development and Use of Geothermal Resources, 1975: San Francisco, 815–825.
- Pedley, M., 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56, 1, 221–246.
- Pentecost, A., 2005. Travertine. Reader in Geomicrobiology School of Health and Life Sciences King’s College London, Springer, ISBN 978-1-4020-3606-4.
- Pentecost, A., 1995. The Quaternary travertine deposits of Europe and Asia. Quaternary Science Review, 1005–1028.
- Rodrigo-Naharro, J., Delgado, A., Herrero, M.J., Granados, A. and Pérez del Villar, L., 2013.
Current travertines precipitation from CO2-rich groundwaters as an alert of CO2 leakages from a natural CO2 storage at Gañuelas-Mazarrón Tertiary Basin (Murcia, Spain). Informs Técnicos Ciemat, 1279, 1–53.
- Stocklin, J., 1977. Structural correlation of the Alpine ranges between Iran and central Asia, Mem. Ser. Society of Geology of France, 8, 333–353.
- Teboul, P.A., Durlet, C., Gaucher, E.C., Virgone, A., Girard, J.P., Curie, J., Lopez, B. and Camoin, G.F., 2016. Origins of elements building travertine and tufa: new perspectives provided by isotopic and geochemical tracers. Sedimentary Geology, 334, 97–114.
- Turi, B., 1986. Stable Isotope Geochemistry of Travertine. Handbook of Environmental Isotopic Geochemistry, Elsevier Science Publishers, Amsterdam, 207–208.
- Zhu, T. and Dittrich, M., 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4, 4.