اثرات نیروگاه خورشیدی بر محیطزیست در ایران
الموضوعات :مصطفی اسماعیلی نسب 1 , سید مجید کشاورز 2
1 - دانشگاه فنی حرفه ای پسران یاسوج
2 - دانشگاه فنی و حرفه ای استان یاسوج، ایران،
الکلمات المفتاحية: انرژی خورشید, سوخت فسیلی, زیست محیطی, انرژی, گازهای گلخانه ای,
ملخص المقالة :
انرژی خورشید از مهمترین انواع انرژیهای نو و تجدید پذیر است که چنانچه جایگزین سوختهای فسیلی شود، میتواند به نگرانیهای موجود درباره پایانپذیری و نیز آلودگیهای زیستمحیطی ناشی از حاملهای انرژی فسیلی و نوسان قیمتها و بحرانهای انرژی خاتمه دهد. با توجه به پتانسیل بالای انرژی خورشیدی در مناطق وسیعی از کشور ایران، از میان منابع انرژی، انرژی خورشیدی دارای جذابیت بیشتری برای محققان است. امروزه کشورهای زیادی از نیروگاه خورشیدی در قالب متصل به شبکه و مستقل از شبکه استفاده میکنند. استفاده از انرژیهای تجدید پذیر به دلیل کاهش وابستگی به نفت و گاز منبعهای کمضرر برای محیطزیست میباشد ارزان بودن، دائمی بودن، پاک بودن، کاهش مصرف سوخت فسیلی و کاهش گازهای گلخانههای، قابلیت بهرهبرداری بهصورت خانگی و در ابعاد بزرگ و نگهداری آسان برخی مزایای استفاده از انرژی خورشیدی و بادی میباشند که این ویژگیهای انرژی تجدید پذیر را به بهترین و پاکترین انرژیها تبدیل نمودهاند.
1) Yari, M., 2016. Investigating the use of renewable energy in different regions of Iran. In Proceedings 3th Third International Conference on Research in Science and Technology.9th July, Berlin.Germany. pp.17 (In Persian with English abstract)
2) 1Panwara, N.L. Kaushikb, S.C. and Kothari, S., 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. 15, 1513–1524.
3) Akkas, O.P. Erten, M.Y. Cam, E. and Inanc, N., 2017. Optimal Site Selection for a Solar Power Plant in the Central Anatolian Region of Turkey. International Journal of Photoenergy. 2017, pp.13
4) Papapostolou, A. Karakosta, C. and Doukas, H., 2017. Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy & Environment. 28(1–2), 88–109.
5) Tavanir Org.2015. Electric Power Industry statistics in Iran. Available online at: http://amar.tavanir.org.ir
6) Science for Environment Policy, 2015. Wind & Solar Energy and nature conservation. Future Brief 9 produced for the European Commission DG Environment. European Union.
7) Sayedi, H. Karbasi, A. Sohrabi, T. and Samadi, R. 2005. Environmental management of power plants. Ministry of Power (SANA). Iran.
8) Aqajani, H. Fattahi Moghadam, M. Akbari, H. and Fattahi, R., 2015. Location of wind turbines based on environmental assessment (case study: Khorasan Razavi province). Iranina journal of Energy. 18(1), 85-100. (In Persian with English abstract).
9) Seyyedan, M.H. and Abdollahi Sarvai, J., 2015.
Renewables Energy. Global Status Report. France
10) Tavanir Org. 2014. Electric Power Industry statistics in Iran. Available online at: http://amar.tavanir.org.ir
11) Satba Org, 2018. The Criteria and Requirements for writing a feasibility study report. Available online at: http://www.satba.gov.ir/
12) Shariat, S.M., 2016. Environmental Impact Assessment. Wetland press. Iran
13) Leopold L. B. Clarke, F.E. Hanshaw, B.B. and Balsley, J.R., 1971. A procedure for Evaluating Environmental Impact. Geological Survey Circular 645, pp.13
14) Hosseini, S. Alimohammadi, M. Nabizadeh, R. and Dehghani, M.H., 2016. Environmental Impact Assessment of the fuel transmission line to combined cycle power Plant of Chabahar project using Iranian Matrix. Journal of Environmental Health Engineering. 4(1), 20-29. (In Persian with English abstract).
15) Pastakia, C.M.R. Jensen, A., 1998. The rapid impact assessment matrix (Riam) For EIA. Environ Impact Assesmant Review. 18(5), 461-482.
16) Shoili, A.G. Farrokhi, M. Alizadeh, H., 2000. Selection of optimum option for sludge disposal in the Guilan province of Iran using rapid impact assessment matrix
(RIAM). Water Resources and Environ Eng. 3(12), 288- 97. (In Persian with English abstract
17) Heydari, E.A. Alidadi, H. Sarkhosh, M. and Sadeghian,
S., 2017. Zaveh cement plant environmental impact assessment using Iranian Leopold Matrix. Journal of Research in Environmental Health. 3(1), 84- 93. (In Persian with English abstract)
18) Valizadeh, S. and Shekari, Z., 2015. Evaluation of Iranian Leopold matrix application in the environmental impact assessment (EIA) of solid waste management options in Birjand city. Health and Environmental. 8(2), 249-62. (In Persian with English abstract)
19) Sajjadi, A.L. Aliakbari, Z. Matlabi, M. Biglari, H. and Rasouli, S.S., 2017. Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix. Electronic Physician. 9(2), 3714-3719.
20) Josimovic, B. Petric, J. and Milijic, S., 2014. The Use of the Leopold Matrix in Carrying Out the EIA for Wind Farms in Serbia. Energy and Environment Research. 4(1), 43-54
21) S. R. Forrest, The limits to organic photovoltaic cell efficiency, MRS Bulletin, Vol. 30, No. 1, pp. 28-32, 2005.
22) M. Knupfer, Exciton binding energies in organic semiconductors, Materials Science and Processing, Vol. 77, No. 5, pp. 623-626, 2003.
23) E. Ernst, H. VonFoerster, Electron bunches of short time duration, Journal of Applied Physics, Vol. 25, No. 5, pp. 674-675, 1954.
24) T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater, Vol. 2, No. 3, pp. 96-102, 2010.
25) P. Sirimanne and V. Perera, Progress in dyesensitized solid state solar cells, Physica Status Solidi (b), Vol. 241, pp. No. 9, 1828- 1833, 2008.
26) D. Eder and A. H. Windle, carbon–inorganic hybrid materials: the carbon
nanotube/TiO2 interface, Advanced Materials, Vol. 20, No. 9, pp. 1787-1793,2008
27) W. Schnabel, Polymers and light: fundamentals and technical applications.
John Wiley & Sons. 2007.
28) B. O’regan, M. Grätzel, A low-cost, high- efficiency solar cell based on dye-sensitized colloidal TiO2 βilms, Nature, Vol. 353, No. 6346, pp. 737-740, 1991.
29) Kay, M. Graetzel, Artificial photosynthesis. 1. Photosensitization of
titania solar cells with chlorophyll derivatives and related natural porphyrins,
The Journal of Physical Chemistry, Vol. 97, pp. No. 23, 6272-6277, 1993.
30) K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous
Nb2O5 electrode sensitized by a ruthenium dye, Chemistry of Materials, Vol. 10, No. 12, pp. 3825-3832, 1998.
31) Q. Wang, S. Ito, M. Grätzel, F. Fabregat- Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells, The Journal of Physical Chemistry B, Vol. 110, No. 50, pp. 25210-25221, 2006.
32) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, Journal of the American Chemical Society, Vol. 125, No. 2, pp. 475-482, 2003.
33) G. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. Jayaweera, K. Tennakone, Dye-
sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, No. 1, pp. 183-185, 2004.
34) J. Bouclé, P. Ravirajan, J. Nelson, Hybrid polymer–metal oxide thin films for
photovoltaic applications, Journal of Materials Chemistry, Vol. 17, No. 30, pp. 3141-3153, 2007.
35) A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, Vol. 95, No. 1, pp. 49-68, 1995.
36) Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, G. Cao, Applications of light scattering in dye- sensitized solar cells, Physical Chemistry Chemical Physics, Vol. 14, No. 43, pp. 14982- 14998, 2012.
37) O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, M. C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, Vol. 334, No. 6062, pp.1530-1533, 2011.
38) P. V. Kamat, Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer, Accounts of Chemical Research, Vol. 45, No. 11, pp. 1906-1915, 2012.
39) S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, M. Gratzel, Sb2S3- based mesoscopic solar cell using an organic hole conductor, The Journal of Physical Chemistry Letters, Vol. 1, No. 10, pp. 1524- 1527, 2010
40) C. Li, Y. Chen, Y. Wang, Z. Iqbal, M. Chhowalla, S. Mitra, A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells, Journal of Materials Chemistry, Vol. 17, No. 23, pp. 2406-2411, 2007.
41) T.Randll." wind and solar are crushing fossil fuels, " 0604 2016. (online).Available: http:// www.bloomberg. com.
42) EIA,"energy efficiency imporovements avoided 870 milion tonnes co2 2014," 09102015.(online).Available: http:// Cleantechnica.com.
43) م. ح. سیدان و ج، عبدالهی42 سروی،" گزارشی وضعیت جهانی انرژی تجدید پذیر در 2015_ یافته های کلیدی، 1394,REN21
44) ع. محمودی،" نفت همچنان عمده ترین منبع تولید برق در جهان،" 1395،518. (درون خطی)،: Availablehttp://news.gov.ir/ detail? ANWID=39287.
45) م.لشکری وب. اوند، " تجزیه و تحلیل انرژی و اکسرزی تولید برق از انرژی خورشید با فتوولتاییک و یک متمرکز کننده،" در کنفرانس ملی بهینه سازی مصرف انرژی در علوم مهندسی، بابل،1393.
46) معاونت برنامه ریزی و نظارت راهبردی رئیس جمهور، راهنمای طراحی سیستم های فتوولتاییک به منظور تامین انرژی الکتریکی به تفکیک اقلیم و کاربری، ضابطه شماره 667، تهران: معاونت نظارت راهبردی وزارت نیرو، امور نظام فنی پژوهشگاه نیرو، 1393.
47) طاهری اصل وع. پزشکی، " بررسی اثرات تولید الکتریکی خورشیدی در یک ساختمان اداری، " در دهمین همایش بین المللی انرژی، تهران،1393.
48) امور مشترکین اداره برق شهرستان ایلام،" فروش انرژی کیلووات ساعت به تفکیک ناحیه و دوره و تعرفه در سال،" ایلام، 1395.
49) مدیریت مصرف_ روابط عمومی،" صرفه جویی در مصرف برق ساختمان های اداری و دولتی،" شرکت توزیع نیروی برق استان ایلام، ایلام، 1395.
50) ح، صادقی. م، نوری شیرازی و ک، بیابانی خامنه، " نقش تولید برق از منابع تجدید پذیر در کاهش گازهای گلخانه ای یک رویکرد اقتصاد سنجی،" نشریه انرژی ایران، جلد دوره 17، شماره شماره3، 1393، 23_28.pp.