بررسی اثرات پدیده تغییر اقلیم بر دما، بارش با استفاده از مدل¬LARS-WG (مطالعه موردی حوضه آبخیز رودخانه بشار)
الموضوعات :حمیدرضا پناهی 1 , حسین منتصری 2 , علیاکبر حکمت زاده 3 , رضا خلیلی 4
1 - کارشناس ¬ارشد، مهندسی عمران گرایش مهندسی و مدیریت منابع آب، دانشگاه یاسوج
2 - استادیار گروه مهندسی عمران،مهندسی و مدیریت منابع آب، دانشگاه یاسوج
3 - دانشیار گروه مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران و محیط زیست دانشگاه صنعتی شیراز
4 - کارشناس ¬ارشد، مهندسی عمران گرایش مهندسی و مدیریت منابع آب، دانشگاه یاسوج
الکلمات المفتاحية: تغییرات اقلیمی, بارش, سناریو¬های اقلیمی, رودخانه بشار, مدل گردش عمومی,
ملخص المقالة :
افزایش گاز های گلخانه ای در چند دهه اخیر و افزایش دمای ناشی از آن باعث به هم خوردن تعادل سیستم اقلیمی کره زمین و تغییرات اقلیمی در اغلب نواحی کره زمین شده است. ازاینرو تطبیق و مقابله با تغییرات اقلیمی در بخش منابع آب به همراه کاهش بازتاب آنها می بایستی بهعنوان بخشی از یک پاسخ جامع منطقهای به آسیبپذیری ناشی از تغییر اقلیم مورد رسیدگی جدی قرار گیرد. در این مطالعه با استفاده از نرمافزار ریزمقیاس نمایی LARS-WG و مدل گردش عمومی جوی اقیانوسی HadCM3 در قالب سناریو های مختلف تعریفشده در گزارش چهارم IPCC (سناریوهای پایه) ازجمله سناریو A1، A2، B1، B2 که بیشتر به مسائل منطقه ای و جهانی از منظر اقتصادی و محیطزیستی توجه دارد، میزان تغییرات دمایی و بارش در 100 سال آینده حوضه رودخانه بشار پیش نگری شد. سپس با استفاده از سناریوی گزارش پنجم (RCP) استفاده شد و نتایج با سناریوهای پایه مقایسه گردد. نتایج نشان داد در هر دو سناریو در دوره آتی با افزایش زیاد متوسط دمای هوا مواجه خواهیم بود ولی کاهش میزان بارش چشمگیر نخواهد بود. در بخش سناریوسازی تغییرات اقلیمی RCP ها تا انتهای قرن 21 نشان از افزایش درجه حرارت و کاهش بارش در سال های آتی دارد. میزان تغییرات دمایی در RCP2.6 بین 3 تا 13 درصد و در RCP8.5 بین 4 تا 14 درصد تخمین زده شد؛ این افزایش دما در مقیاس های بزرگ باعث افزایش تبخیر و طولانیتر شدن دوره های خشکسالی می شود.
Chang, J., Wang, Y., Istanbulluoglu, E., Bai, T., Huang, Q., Yang, D., & Huang, S. (2015). Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quaternary International, 380, 169–179.
Chun, K. P., Wheater, H. S., Nazemi, A., & Khaliq, M. N. (2013). Precipitation downscaling in Canadian Prairie Provinces using the LARS-WG and GLM approaches. Canadian Water Resources Journal, 38(4), 311–332.
Fenta Mekonnen, D., & Disse, M. (2018). Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrology and Earth System Sciences, 22(4), 2391–2408.
Fiseha, B. M., Melesse, A. M., Romano, E., Volpi, E., & Fiori, A. (2012). Statistical downscaling of precipitation and temperature for the Upper Tiber Basin in Central Italy. International Journal of Water Sciences, 1.
Hassan, Z., Shamsudin, S., & Harun, S. (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and Applied Climatology, 116(1–2), 243–257.
Heydari Tasheh Kaboud, S. (2019). Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios TT. Jgs, 19(53), 157–176. https://doi.org/10.29252/jgs.19.53.157
Khalili, R., Montaseri, H., & Motaghi, H. (2021). Evaluation of water quality in the Chalus River using the statistical analysis and water quality index (WQI). Water and Soil Management and Modelling. https://doi.org/10.22098/mmws.2021.9300.1031
Khalili, R., Zali, A., & Motaghi, H. (2021). Evaluating the Heavy Metals in the Water and Sediments of Haraz River, Using Pollution Load Index (PLI) and Geo accumulation Index (Igeo). Iranian Journal of Soil and Water Research. https://doi.org/10.22059/ijswr.2021.316080.668850
Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117.
Lenderink, G., Buishand, A., & Van Deursen, W. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11(3), 1145–1159.
Mohammadi, H., khalili, R., & Mohammadi, S. (2021). Forecasting future temperature and precipitation under the effects of climate change using the LARS-WG climate generator (Case Study: South Zagros Region of Iran(. Nivar, 45(114–115), 137–153. https://doi.org/10.30467/nivar.2022.319565.1209
Panahi, A., & Khorramabadi, F. (2020). Evaluation of CSIRO and LARS WG data accuracy in simulation of climatic variables of East Azerbaijan province. Climate Change and Climate Change, 1(2), 139–163.
Sarkar, J., & Chicholikar, J. R. (2017). Future climate change scenario in hot semi-arid climate of Saurashtra, Gujarat by using statistical downscaling by LARS-WG model. MAUSAM, 68(4), 589–596.
Sarkar, J., Chicholikar, J. R., & Rathore, L. S. (2015). Predicting future changes in temperature and precipitation in arid climate of Kutch, Gujarat: analyses based on LARS-WG model. Current Science, 2084–2093.
Sha, J., Li, X., & Wang, Z.-L. (2019). Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios. Theoretical and Applied Climatology, 137(3), 3027–3039.
Thamo, T., Addai, D., Pannell, D. J., Robertson, M. J., Thomas, D. T., & Young, J. M. (2017). Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system. Agricultural Systems, 150, 99–108.
Veijalainen, N., Lotsari, E., Alho, P., Vehviläinen, B., & Käyhkö, J. (2010). National scale assessment of climate change impacts on flooding in Finland. Journal of Hydrology, 391(3–4), 333–350.
Zubaidi, S. L., Kot, P., Hashim, K., Alkhaddar, R., Abdellatif, M., & Muhsin, Y. R. (2019). Using LARS–WG model for prediction of temperature in Columbia City, USA. IOP Conference Series: Materials Science and Engineering, 584(1), 12026.