تشخیص و طبقه¬بندی عیوب داخلی ترانسفورماتور¬های قدرت
الموضوعات :عمار موسوی شکیب 1 , سید مجید کشاورز 2
1 - دانشگاه فنی و حرفه ای پسران یاسوج
2 - دانشگاه فنی و حرفه ای استان یاسوج، ایران،
الکلمات المفتاحية: ترانسفورماتور, کابلهای قدرت, ژنراتور,
ملخص المقالة :
شبکه گسترده سیستم قدرت دارای تجهیزات بسیار گرانقیمتی می باشد که ازجمله آن می توان به ژنراتور، بریکر، کابل های قدرت و ترانسفورماتور اشاره کرد. ترانسفورماتور قدرت بهعنوان قلب تپنده این شبکه بوده که همواره تحت تأثیر شرایط بهره برداری و محیطی، دچار خطاهای مختلفی شده و در برخی موارد سبب خرابی و خروج از مدار ترانسفورماتور و عدم دسترسی طولانیمدت خواهد شد. درنتیجه برنامههای تعمیر و نگهداری باید بهجای مبتنی بر زمان، مبتنی بر شرایط بهرهبرداری و محيطي گردند که این مسئله خود مستلزم آن می باشد که از شرایط حال تجهیز نيز آگاه باشیم. لذا استفاده از روش های نظارت و تشخیص خطا که توانایی ارزیابی شرایط داخلی تجهیزات رادارند، بسیار بااهمیت خواهد بود. روش ها و تست های مختلفی بهمنظور ارزیابی شرایط ترانسفورماتور وجود دارد که از آن جمله می توان به روش هایی مانند تحلیل پاسخ فرکانسی ، آنالیز گازهای محلول ، پردازش سیگنال ، شار نشتی و جریان توالی منفی ... نام برد. از بین آن ها، روش تحلیل پاسخ فرکانسی روشی بسیار محبوب، فراگیر بوده که قابلیت بالایی در تشخیص خطا ها داشته و پیاده-سازی آن ساده و راحت می باشد.
1. P. Picher, J. Lapworth, T. Noonan, and J. Christian, "Mechanical Condition Assessment of Transformer Windings using Frequency Response Analysis," Cigre Report, vol. 342, 2008.
2. S. Islam, "Detection of shorted turns and winding movements in large power transformers using frequency response analysis," in Power Engineering Society Winter Meeting, 2000. IEEE, 2000, pp. 2233-2238.
3. E. Rahimpour, J. Christian, K. Feser, and H. Mohseni, "Transfer function method to diagnose axial displacement and radial deformation of transformer windings," Power Delivery, IEEE Transactions on, vol. 18, pp. 493-505, 2003.
4. V. Behjat, A. Vahedi, A. Setayeshmehr, H. Borsi, and E. Gockenbach, "Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings," Power Delivery, IEEE Transactions on, vol. 26, pp. 2123-2133, 2011.
5. V. Behjat, A. Vahedi, A. Setayeshmehr, H. Borsi, and E. Gockenbach, "Sweep frequency response analysis for diagnosis of low level short circuit faults on the windings of power transformers: An experimental study," International Journal of Electrical Power & Energy Systems, vol. 42, pp. 78-90, 2012.
6. E. Bjerkan, "High frequency modeling of power transformers: stresses and diagnostics," Norwegian University of Science and Technology, 2005.
7. J. Jayasinghe, Z. Wang, P. Jarman, and A. Darwin, "Winding movement in power transformers: a comparison of FRA measurement connection methods," Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 13, pp. 1342-1349, 2006.
8. K. N. B. Abeywickrama, Y. V. Serdyuk, and S. M. Gubanski, "Exploring possibilities for characterization of power transformer insulation by frequency response analysis (FRA)," Power Delivery, IEEE Transactions on, vol. 21, pp. 1375-1382, 2006.
9. K. Abeywickrama, A. D. Podoltsev, Y. V. Serdyuk, and S. M. Gubanski, "Computation of parameters of power transformer windings for use in frequency response analysis," Magnetics, IEEE Transactions on, vol. 43, pp. 1983-1990, 2007.
10. N. Abeywickrama, Y. V. Serdyuk, and S. M. Gubanski, "High-frequency modeling of power transformers for use in frequency response analysis (FRA)," Power Delivery, IEEE Transactions on, vol. 23, pp. 2042-2049, 2008.
11. N. Joshi, Y. Sood, R. Jarial, and R. Thapliyal, "Transformer Internal Winding Faults Diagnosis Methods: A Review."
12. K. Meng, Z. Y. Dong, D. H. Wang, and K. P. Wong, "A self-adaptive RBF neural network classifier for transformer fault analysis," Power Systems, IEEE Transactions on, vol. 25, pp. 1350-1360, 2010.
13. S. Xin and S. Qing, "Fault Diagnosis For Power Network Based on Adaptive Wavelet Kernel Relevance Vector Machine Algorithm," Journal of Information and Computational Science, vol. 8, p. 13, 2011.
14. S. ZHANG, F. KUANG, Y. WANG, and L. WANG, "A Novel SVM Model with PSO on Power Transformer Fault Diagnosis," Journal of Computational Information Systems, vol. 8, pp. 5973-5982, 2012.
15. J.-W. Kim, B. Park, S. C. Jeong, S. W. Kim, and P. Park, "Fault diagnosis of a power transformer using an improved frequency-response analysis," Power Delivery, IEEE Transactions on, vol. 20, pp. 169-178, 2005.
16. D. Xu, C. Fu, and Y. Li, "Application of artificial neural network to the detection of the transformer winding deformation," 1999.
17. A. Shintemirov, W. Tang, and Q. Wu, "Transformer winding condition assessment using frequency response analysis and evidential reasoning," Electric Power Applications, IET, vol. 4, pp. 198-212, 2010.
18. M. Florkowski and J. Furgał, "Detection of transformer winding deformations based on the transfer function—measurements and simulations," Measurement Science and Technology, vol. 14, p. 1986, 2003.
19. S. V. Kulkarni and S. Khaparde, Transformer engineering: design and practice vol. 25: CRC Press, 2004.
20. M. Babiy, R. Gokaraju, and J. C. Garcia, "Turn-to-turn fault detection in transformers using negative sequence currents," in Electrical Power and Energy Conference (EPEC), 2011 IEEE, 2011, pp. 158-163.
21. R. Bhide, M. Srinivas, A. Banerjee, and R. Somakumar, "Analysis of winding inter-turn fault in transformer: A review and transformer models," in Sustainable Energy Technologies (ICSET), 2010 IEEE International Conference on, 2010, pp. 1-7.
22. N. Hashemnia, A. Abu-Siada, M. A. Masoum, and S. M. Islam, "Characterization of transformer FRA signature under various winding faults," in Condition Monitoring and Diagnosis (CMD), 2012 International Conference on, 2012, pp. 446-449.
23. P. H. Thomas, "Static Strains in High Tension Circuits and the Protection of Apparatus," American Institute of Electrical Engineers, Transactions of the, vol. 19, pp. 213-264, 1902.
24. L. Blume and A. Boyajian, "Abnormal voltages within transformers," American Institute of Electrical Engineers, Transactions of the, vol. 38, pp. 577-620, 1919.
25. P. Abetti, "Transformer models for the determination of transient voltages," Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, vol. 72, pp. 468-480, 1953.
26. D. Wilcox, W. Hurley, and M. Conlon, "Calculation of self and mutual impedances between sections of transformer windings," in Generation, Transmission and Distribution, IEE Proceedings C, 1989, pp. 308-314.
27. D. Wilcox, W. Hurley, T. McHale, and M. Conlon, "Application of modified modal theory in the modelling of practical transformers," in Generation, Transmission and Distribution, IEE Proceedings C, 1992, pp. 513-520.
28. S. Hettiwatte, P. Crossley, Z. Wang, A. Darwin, and G. Edwards, "Simulation of a transformer winding for partial discharge propagation studies," in Power Engineering Society Winter Meeting, 2002. IEEE, 2002, pp. 1394-1399.
29. C. Zhao, J. Ruan, Z. Du, S. Liu, Y. Yu, and Y. Zhang, "Calculation of parameters in transformer winding based on the model of multi-conductor transmission line," in Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, 2008, pp. 463-467.
30. S. D. Mitchell, "Power transformer modelling to support the interpretation of frequency response analysis| NOVA. The University of Newcastle's Digital Repository," 2011.