بهرهگیری از رویکردهای جدید بهینهسازی هوشمند فراابتکاری مبتنی بر هوش مصنوعی در طراحی سیستمهای ناوبری INS
الموضوعات :علی محمدی 1 , فرید شیخ الاسلام 2 , مهدی امامی 3
1 - دانشگاه صنعتی اصفهان،دانشكده مهندسی برق و كامپیوتر
2 - دانشگاه صنعتی اصفهان ،دانشكده مهندسی برق و كامپیوتر
3 - دانشگاه یزد،دانشكده مهندسی مکانیک
الکلمات المفتاحية: بهینهسازی هوشمند, الگوریتمهای فراابتکاری, محاسبات نرم, ناوبری تلفیقی INS/GNSS, بهینهسازی سیستم صفحات شیبدار,
ملخص المقالة :
به کارگیری تکنیکهای محاسبات نرم در علوم مهندسی حجم زیادی از پژوهشها را شامل شده است. از جمله این مسایل میتوان به طراحی و بهینهسازی سیستمهای ناوبری جهت استفاده در سیستمهای حملونقل زمینی، دریایی و هوایی اشاره کرد. از این رو در این پژوهش سعی در بهرهگیری از رویکردهای جدید بهینهسازی هوشمند فراابتکاری مبتنی بر هوش مصنوعی در جهت طراحی سامانههای ناوبری تلفیقی میباشد. برای این منظور از نسخه جدید الگوریتم بهینهسازی سیستم صفحات شیبدار به همراه چند نسخه دیگر آن در کنار دو روش مرسوم الگوریتم زیستی و بهینهسازی ازدحام ذرات استفاده شده است. ملاحظات بر روی یک مسأله INS/GNSS با ماژولهای اندازهگیری اینرسی IMU MEMS انجام شدند. ماتریسهای کواریانس نویز فرایند و اندازهگیری به عنوان متغیرهای طراحی و مجموع میانگین مربعات خطا به عنوان تابع هدف در قالب یک مسأله کمینهسازی تکهدفه در نظر گرفته شدهاند. خروجیها بر حسب شاخصهای آماری و عملکردی نظیر زمان اجرا، برازندگی، همگراییها، دقت سرعتهای زاویهای، طول و عرض جغرافیایی، بلندی، Roll، Pitch، Yaw و مسیریابی به همراه رتبهبندی الگوریتمها ارائه شدند. برایند کلی نتایج حکایت از عملکرد موفق و برتری نسبی روش های IPO و IIPO نسبت به رقبا و همچنین کارکرد قابل رقابت الگوریتم های پیشنهادی در قیاس با حجم ملاحظات و محاسبات مسأله مفروض دارد.
[1] G. Minkler and J. Minkler, Theory and Application of Kalman Filtering, Magellan Book Company, 1993.
[2] V. Sathiya and M. Chinnadurai, "Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning," Robotica, vol. 37, no. 8, pp. 1363-1382, Aug. 2019.
[3] S. M. J. Jalali, A. Khosravi, P. M. Kebria, R. Hedjam, and S. Nahavandi, "Autonomous robot navigation system using the evolutionary multi-verse optimizer algorithm," in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, SMC’19, pp. 1221-1226, Bari, Italy, 6-9 Oct. 2019.
[4] Q. Liu, Y. Li, and L. Liu, "A 3D simulation environment and navigation approach for robot navigation via deep reinforcement learning in dense pedestrian environment," in Proc. IEEE 16th Int. Conf. on Automation Science and Engineering, CASE’20, pp. 1514-1519, Hong Kong, China, 20-21 Aug. 2020.
[5] L. Cong, S. Yue, H. Qin, B. Li, and J. Yao, "Implementation of a MEMS-based GNSS/INS integrated scheme using supported vector machine for land vehicle navigation," IEEE Sensors J., vol. 20, no. 23, pp. 14423-14435, Dec. 2020.
[6] J. H. Yi, M. Lu, and X. J. Zhao, "Quantum inspired monarch butterfly optimisation for UCAV path planning navigation problem," Int. J. Bio-Inspired Comput., vol. 15, no. 2, pp. 75-89, 2020.
[7] M. G. Bellemare, et al., "Autonomous navigation of stratospheric balloons using reinforcement learning," Nature, vol. 588, no. 7836, pp. 77-82, Dec. 2020.
[8] N. Al Bitar and A. I. Gavrilov, "Neural networks aided unscented kalman filter for integrated INS/GNSS systems," in Proc. 27th Saint Petersburg Int. Conf. on Integrated Navigation Systems, ICINS’20, 4 pp., 25-27 May 2020.
[9] J. Wang, Z. Ma, and X. Chen, "Generalized dynamic fuzzy NN model based on multiple fading factors SCKF and its application in integrated navigation," IEEE Sensors J., vol. 21, no. 3, pp. 3680-3693, Feb. 2021.
[10] F. Gul, W. Rahiman, S. S. N. Alhady, A. Ali, I. Mir, and A. Jalil, "Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO-GWO optimization algorithm with evolutionary programming," J. Ambient Intell. Humaniz. Comput., vol. 12, no. 7, pp. 7873-7890, Jul. 2021.
[11] P. Zielinski and U. Markowska-Kaczmar, "3D robotic navigation using a vision-based deep reinforcement learning model," Appl. Soft Comput., vol. 110, Article ID: 107602, Oct. 2021.
[12] D. Gao, X. Lyu, F. Qin, L. Chang, and B. Hu, "A real time gravity compensation method for high precision INS based on neural network," in ¬Proc. 28th Saint Petersburg Int. Conf. on Integrated Navigation Systems, ICINS’21, 5 pp., Saint Petersburg, Russia, 31 May-2 Jun. 2021.
[13] S. Wen, Z. Wen, D. Zhang, H. Zhang, and T. Wang, "A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning," Appl. Soft Comput., vol. 110, Article ID: 107605, Oct. 2021.
[14] N. Al Bitar and A. Gavrilov, "A novel approach for aiding unscented Kalman filter for bridging GNSS outages in integrated navigation systems," Navigation, vol. 68, no. 3, pp. 521-539, Fall. 2021.
[15] F. Yan, S. Li, E. Zhang, J. Guo, and Q. Chen, "An adaptive nonlinear filter for integrated navigation systems using deep neural networks," Neurocomputing, vol. 446, pp. 130-144, Jul. 2021.
[16] Y. Wu, "A survey on population-based meta-heuristic algorithms for motion planning of aircraft," Swarm Evol. Comput., vol. 62, Article ID: 100844, Apr. 2021.
[17] E. Pulido Herrera and H. Kaufmann, "Adaptive methods of Kalman filtering for personal positioning systems," in Proc. 23rd Int. Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 584-589, Portland, OR, USA, 21-24 Sept. 2010.
[18] R. Gonzalez, J. I. Giribet, and H. D. Patino, "NaveGo: a simulation framework for low-cost integrated navigation systems," J. Control Eng. Appl. Informatics, vol. 17, no. 2, pp. 110-120, 2015.
[19] J. Georgy, Advanced Nonlinear Techniques for Low Cost Land Vehicle Navigation, Ph.D Thesis, Department of Electrical and Computer Engineering, Queen's University Kingston, Ontario, Canada, 2010.
[20] A. R. Khairi, Heading Drift Mitigation for Low-Cost Land Inertial Pedestrian Navigation, Ph.D Thesis, University of Nottingham, 2012.
[21] D. E. Goldberg, Genetic Algorithms, Addison Wesley, 1989.
[22] J. H. Holland, Adaptation in Natural and Artificial Systems, the University of Michigan Press, 1975.
[23] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29-41, Feb. 1996.
[24] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. Int. Conf. on Neural Networks, ICNN'95, vol. 4, pp. 1942-1948, Perth, Australia, 27 Nov.-1 Dec. 1995.
[25] M. H. Mozaffari, H. Abdy, and S. H. Zahiri, "IPO: an inclined planes system optimization algorithm," Computing & Informatics, vol. 35, no. 1, pp. 222-240, 2016.
[26] A. Mohammadi and S. H. Zahiri, "IIR model identification using a modified inclined planes system optimization algorithm," Artificial Intelligence Review, vol. 48, no. 2, pp. 237-259, 2017.
[27] S. Mohammadi-Esfahrood, A. Mohammadi, and S. H. Zahiri, "A simplified and efficient version of inclined planes system optimization algorithm," in Proc. 5th Conf. on Knowledge Based Engineering and Innovation, KBEI’19, pp. 504-509, Tehran, Iran, 28 Feb.-1 Mar. 2019.
[28] A. Mohammadi, F. Sheikholeslam, and S. Mirjalili, "Inclined planes system optimization: theory, literature review, and state-of-the-art versions for IIR system identification," Expert Systems with Applications, vol. 200, Article ID: 117127, Aug. 2022.
[29] A. Mohammadi, F. Sheikholeslam, and M. Emami, "Metaheuristic algorithms for integrated navigation systems," In: Ouaissa, M., Khan, I.U., Ouaissa, M., Boulouard, Z., Hussain Shah, S.B. (eds) Computational Intelligence for Unmanned Aerial Vehicles Communication Networks. Studies in Computational Intelligence, vol. 1033, pp. 45-72, Springer, 2022.
[30] A. Mohammadi, F. Sheikholeslam, M. Emami, and S. Mirjalili, "Designing INS/GNSS integrated navigation systems by using IPO algorithms," submitted to Neural Computing and Applications, 2022.