فیلتر رنگي كاهشي بازتابنده مقاوم در مقابل تغييرات زاويه تابش با استفاده از فراسطح دياکسيد تيتانيوم و آينههاي آلومينيومي
الموضوعات :
1 - دانشگاه صنعتي شيراز
2 - دانشگاه صنعتي شيراز
الکلمات المفتاحية: فيلتر رنگي کاهشيدوقطبي مغناطيسيغير وابسته به قطبشغير حساس به زاويه تابش,
ملخص المقالة :
اخيراً فيلترهاي رنگي براي تصويربرداري و پرينت رنگي با کيفيت و وضوح بالا، در مقياس زير طول موج به کار ميروند. در اين مقاله، يک فيلتر رنگي کاهشي بازتابنده با کنتراست رنگي عالي نشان داده شده است. در فيلتر پيشنهادي، نانومکعبهاي دياکسيد تيتانيوم با آينههاي آلومينيومي در بالا و پايين نانومکعبها مجتمع شده است. به دليل ايجاد دوقطبي مغناطيسي در نانومکعبهاي دياکسيد تيتانيوم، يک تشديد در طيف مرئي اتفاق ميافتد که با تغيير اندازه ضلع نانومکعبها، طول موج تشديد در تمام طيف مرئي تنظيم ميشود. پچهاي آلومينيومي در دو طرف نانومکعبها، باعث دستيابي به بازده بيش از 70% و پهناي باند كمتر از 35 نانومتر ميشوند. فيلتر پيشنهادي نسبت به زاويه تابش خيلي حساس نيست، به طوري که با افزايش زاويه تابش از 0 تا 60 درجه، طول موج تشديد تغيير بسيار ناچيزي دارد و پهناي باند و بازده يکساني را حفظ ميکند. به علاوه، به دليل هندسه متقارن، فيلتر پيشنهادي به قطبش موج ورودي نيز وابسته نيست. اين مزيتها عملکرد فيلتر پيشنهادی را در تصويربرداري و نمايشگرهاي با روشنايي و وضوح بالا تسهيل ميسازد.
[1] P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Stractural colour: now you see it-now you don't," Nature, vol. 410, no. no.303, p. 36, 1 Mar. 2001.
[2] M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, "Nanometre optical coatings based on strong on strong interference effects in highly absorbing media," Nature Mat., vol. 12, no. 1, pp. 20-24, Jan. 2013.
[3] T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, "Structural colors: frm plasmonic to carbon nanostructures," Small, vol. 7, no. 22, pp. 3128-3136, 18 Nov.2011.
[4] B. Zeng, Y. Gao, and F. J. Bartoli, "Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters," Sci. Rep., vol. 3, Article no. 2840, 9 pp., 8 Oct. 2013.
[5] Y. Qiu, L. Zhan, X. Hu, S. Luo, and Y. Xia, "Demonstration of color filters for OLED display based on extraordinary optical transmission through periodic hole array on metallic film," Displays, vol. 32, no. 5, pp. 308–312, Dec. 2011.
[6] J. Y. Lee, K. T. Lee, S. Y. Seo, and L. J. Guo, "Decorative power generation panels creating angle insensitive transmissive colors," Sci. Rep., vol. 4, Article no. 4192, 6 pp., 28 Feb. 2014.
[7] J. S. Clausen, E. Hojlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, "Plasmonic metasurfaces for coloration of plastic consumer products," Nano Lett., vol. 14, no. no. 8, pp. 4499-4504, 8 Jul. 2014.
[8] V. R. Shrestha, C. S. Park, and S. S. Lee, "Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response," Opt. Express, vol. 22, no. 3, pp. 3691–3704, 10 Feb. 2014.
[9] Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Lett., vol. 15, no. no. 5, pp. 3122–3127, 6 Apr. 2015.
[10] H. Hu, et al., "Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap hetero structures," J. Mat. Chem., vol. 22, no. 1, pp. 11048-11053, 2 Apr. 2012.
[11] Q. Chen and D. R. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express, vol. 18, no. 13, pp. 14056-14062, 21 Jun. 2010.
[12] G. Y. Si, E. S. P. Leong, A. J. Danner, and J. H. Teng, "Plasmonic coaxial Fabry-Pérot nanocavity color filter," Int. Soc. Opt. Photon., vol. 7757, Article no. 77573F, 5 pp. , 10 Sept. 2010.
[13] M. Aalizadeh, A. E. Serebryannikov, A. Khavasi, G. A. E. Vandenbosch, and E. Ozbay, "Toward electrically tunable, lithography-free, ultra-thin color filters covering the whole visible spectrum," Sci. Rep., vol. 8, Article no. 11316, 11 pp., 27 Jul. 2018.
[14] Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photonics, vol. 2, no. no. 2, pp. 183-188, 28 Jan. 2015.
[15] C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO 2-Ag integrated with a phase compensating dielectric overlay," Sci. Rep., vol. 5, Article no. 8467, 8 pp., 16 Feb. 2015.
[16] Z. Ren, Y. Sun, Z. Lin, C. Wang, W. Huang, and X. Zhi, "Tunable guided-mode resonance filters for multi-primary colors based on polarization rotatin," IEEE Photon. Technol. Lett., vol. 30, no. 21, pp. 1858-1861, 17 Sept. 2018.
[17] Y. Ye, R. Shao, Y. Zhou, and L. Chen, "Wide-angle transmissive filter based on a guided-mode resonant grating," Appl. Opt., vol. 51, no. 24, pp. 5785-5790, 20 Aug. 2012.
[18] M. J. Uddin, T. Khaleque, and R. Magnusson, "Guided-mode resonant polarization-controlled tunable color filters," Opt. Express, vol. 22, no. 10, pp. 12307–12315, 19 May 2014.
[19] K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, "Printing colour at the optical diffraction limit," Nature Nanotechnol., vol. 7, no. 1, pp. 557-561, Sept. 2012.
[20] T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nature Commun., vol. 1, Article no. 59, 5 pp., 24 Aug. 2010.
[21] Y. T. Yoon, C. H. Park, S. S. Lee, Y. T. Yoon, C. H. Park, and S. S. Lee, "Highly efficient color filter incorporating a thin metal-dielectric resonant structure," Appl. Phys. Express, vol. 5, Article no. 022501, 4 pp., 8 Feb. 2012.
[22] Y. R. Wu, A. Hollowell, C. Zhang, and L. J. Guo, "Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit," Sci. Rep., vol. 3, Article no. 1194, 6 pp., 1 Feb. 2013.
[23] G. V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: beyond gold and silver," Adv. Mat., vol. 25, no. 24, pp. 3264-3294, 25 Jun. 2013.
[24] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, vol. 345, no. 6194, pp. 298-302, 18 Jul. 2014.
[25] S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, "Demonstration of zero optical backscattering from single nanoparticles," Nano Lett., vol. 13, no. 4, pp. 1806-1809, 5 Mar. 2013.
[26] N. W. Daw, "Goldfish retina: organization for simultaneous color contrast," Science, vol. 158, no. no. 3803, pp. 942-944, 17 Nov. 1976.
[27] S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, "All-dielectric full-color printing with TiO2 metasurfaces," ACS Nano, vol. 11, no. 5, pp. 4445-4452, 19 Mar. 2017.
[28] S. U. Lee and B. K. Ju, "Wide-gamut plasmonic color filters using a complementary design method," Sci. Rep, vol. 7, Article no. 40649, 5 pp., 13 Jan. 2017.
[29] C. Yang, W. Shen, Y. Zhang, H. Peng, X. Zhang, and X. Liu, "Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure," Opt. Express, vol. 22, no. 9, pp. 11384-11391, 5 May. 2014.