ارزیابی مشخصه فلیپفلاپ استاتیک مبتنی بر ترانزیستور نانو- نوار گرافنی سد شاتکی تحت تغییرات فرایند ساخت
الموضوعات :عرفان عباسیان 1 , مرتضی قلی پور 2
1 - دانشگاه صنعتی نوشیروانی بابل
2 - دانشگاه صنعتی نوشیروانی بابل
الکلمات المفتاحية: ترانزیستور نانو-نوار گرافنی (GNRFET)سد شاتکیفلیپ فلاپپارامترهای زمانیمونت کارلو,
ملخص المقالة :
ترانزیستورهای نانو- نوار گرافینی (GNRFETs) به عنوان یک گزینه امیدوارکننده برای جایگزینی ترانزیستورهای سیلیکونی متداول در تکنولوژی نسل آینده مطرح میباشند. کانال GNRFET در مقیاس چند نانومتر است و از این رو بررسی تأثیر تغییرات فرایند ساخت بر روی عملکرد مدارها بسیار حایز اهمیت خواهد بود. در این مقاله، تأثیر تغییرات فرایند ساخت نظیر ضخامت اکسید، طول کانال و تعداد خطوط دایمر بر روی تأخیر، توان و حاصلضرب انرژی- تأخیر (EDP) فلیپفلاپ مبتنی بر SB-GNRFET ارزیابی شده و مورد تجزیه و تحلیل قرار گرفته است. علاوه بر آن شبیهسازی مونتکارلو نیز برای تحلیل آماری این تغییرات انجام شده است. با تغییر ضخامت اکسید از مقدار نامی به nm 15/1، تأخیر انتشار و EDP به ترتیب به میزان 57/31 و 62/60 درصد افزایش مییابد. همچنین تغییر طول کانال کمترین میزان تأثیر را بر روی مشخصه فلیپفلاپ دارد. با افزایش یک واحد تعداد خطوط دایمر از مقدار نامی، تأخیر انتشار و EDP به ترتیب به میزان 48/315 و 79/204 درصد افزایش مییابد. همچنین نتایج حاصل از شبیهسازی مونتکارلو نشان میدهد که مشخصه فلیپفلاپ نسبت به تغییر ضخامت اکسید یک توزیع هیستوگرام با میزان گستردگی 46/2، 57/1 و 39/2 برابر نسبت به تغییر خطوط دایمر دارد.
[1] L. B. Kish, "End of Moore's law: thermal (noise) death of integration in micro and nano electronics," Physics Letters A, vol. 305, no. 3, pp. 144-149, Dec. 2002.
[2] F. Kreupl, "Advancing CMOS with carbon electronics," in Proc. of Conf. on Design, Automation & Test in Europe, 6 pp., Dresden, Germany, 24-28 Mar. 2014.
[3] S. Narendra, V. De, S. Borkar, D. A. Antoniadis, and A. P. Chandrakasan, "Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18 µm CMOS," IEEE J. of Solid-State Circuits, vol. 39, no. 3, pp. 501-510, Mar. 2004.
[4] H. R. Aradhya, H. Madan, T. Megaraj, M. Suraj, R. Karthik, and R. Muniraj, "GNRFET based 8-bit ALU," International J. of Electronics and Communication Engineering, vol. 5, no. 1, pp. 45-54, Dec. 2016.
[5] A. Y. Goharrizi, M. Pourfath, M. Fathipour, and H. Kosina, "Device performance of graphene nanoribbon field-effect transistors in the presence of line-edge roughness," IEEE Trans. on Electron Devices, vol. 59, no. 12, pp. 3527-3532, Dec. 2012.
[6] S. Joshi and U. Albalawi, "Statistical process variation analysis of schottky-barrier type GNRFET for RF application," in Proc. Int. Conf. on Current Trends in Computer, Electrical, Electronics and Communication, 6 pp., Mysore, India, 8-9 Sept. 2016.
[7] A. Sangai, Circuit Level Delay and Power Analysis of Graphene Nano-Ribbon Field-Effect Transistors Using Monte Carlo Simulations and Standard Cell Library Characterization, MSc Thesis, University of Illinios-Urbana-Champaign, 2014.
[8] International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net/, 2013.
[9] F. Schwierz, "Graphene transistors," Nature Nnanotechnology, vol. 5, no. 7, pp. 487-496, May 2010.
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, Oct. 2004.
[11] Y. Banadaki, K. Mohsin, and A. Srivastava, "A graphene field effect transistor for high temperature sensing applications," in Proc. SPICE (Smart Structures/NDE: Nano-, Bio-, and Info-Tech Sensors and System: SSNO6), vol. 9060, 7 pp, 16-16 Apr. 2014.
[12] S. P. Mohanty, Nanoelectronic Mixed-Signal System Design, McGraw-Hill Education New York, 2015.
[13] S. Morozov, et al., "Giant intrinsic carrier mobilities in graphene and its bilayer," Physical Review Letters, vol. 100, no. 1, Article ID 016602, 16 Jan. 2008.
[14] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, no. 3, pp. 183-191, Mar. 2007.
[15] K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, et al., "Two-dimensional atomic crystals," in Proc. of the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, Jul. 2005.
[16] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nature Nanotechnology, vol. 3, no. 8, pp. 491-495, Aug. 2008.
[17] S. Joshi and U. Alabawi, "Comparative analysis of 6T, 7T, 8T, 9T, and 10T realistic CNTFET based SRAM," J. of Nanotechnology, vol. 2017, no. 5, pp. 1-9, May 2017.
[18] J. S. Moon and D. K. Gaskill, "Graphene: its fundamentals to future applications," IEEE Trans. on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2702-2708, Oct. 2011.
[19] E. Kougianos, S. Joshi, and S. P. Mohanty, "Multi-swarm optimization of a graphene FET based voltage controlled oscillator circuit," in Proc. IEEE Computer Society Annual Symp. on VLSI, ISVLSI’15, pp. 567-572, Montpellier, France, 8-10 Jul. 2015.
[20] M. Gholipour, Y. Y. Chen, A. Sangai, N. Masoumi, and D. Chen, "Analytical SPICE-compatible model of Schottky-barrier-type GNRFETs with performance analysis," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp. 650-663, Mar. 2015.
[21] Y. Y. Chen, A. Sangai, M. Gholipour, and D. Chen, "Graphene nano-ribbon field-effect transistors as future low-power devices," in Proc. Int. Symp. on Low Power Electronics and Design, ISLPED’13, pp. 151-156, Beijing, China, 4- 5 Sept. 2013.
[22] M. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, "Technology exploration for graphene nanoribbon FETs," in Proc. 45th ACM/IEE Design Automation Conf., pp. 272-277, Anaheim, CA, USA, 8-13 Jun. 2008.
[23] S. Joshi, S. P. Mohanty, E. Kougianos, and V. P. Yanambaka, "Graphene nanoribbon field effect transistor based ultra-low energy SRAM design," in Proc. IEEE Int. Symp. on Nanoelectronic and Information Systems, pp. 76-79, Gwalior, India, 19-21 Dec. 2016.
[24] Y. Y. Chen, A. Sangai, A. Rogachev, M. Gholipour, G. Iannaccone, G. Fiori, et al., "A SPICE-compatible model of MOS-type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation," IEEE Trans. on Nanotechnology, vol. 14, no. 6, pp. 1068-1082, Nov. 2015.
[25] Y. Y. Chen, et al., "A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation," in Proc. Design, Automation & Test in Europe Conf. & Exhibition, pp. 1789-1794, Grenoble, France, 18-23 Mar. 2013.
[26] A. Rogachev, Evaluating the Effect of Process Variation on Silicon and Graphene Nano-Ribbon Based Circuits, M.Sc. Thesis, University of Illinios-Urbana-Champaig, 2012.
[27] M. Mishra, R. S. Singh, and A. Imran, "Performance optimization of GNRFET Inverter at 32 nm technology node," in Materials Today: Proc., vol. 4, no. 9, pp. 10607-10611, Oct. 2017.
[28] Y. Yoon, G. Fiori, S. Hong, G. Iannaccone, and J. Guo, "Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs," IEEE Trans. on Electron Devices, vol. 55, no. 9, pp. 2314-2323, Aug. 2008.
[29] D. G. Anil, Y. Bai, and Y. Choi, "Performance evaluation of ternary computation in SRAM design using graphene nanoribbon field effect transistors," in Proc. IEEE 8th Annual Computing and Communication Workshop and Conf., pp. 382-388, Las Vegas, NV, USA, 8-10 Jan. 2018.
[30] M. Gholipour, Y. Y. Chen, A. Sangai, and D. Chen, "Highly accurate SPICE-compatible modeling for single-and double-gate GNRFETs with studies on technology scaling," in Proc. of the Conf. on Design, Automation & Test in Europe, 6 pp., Dresden, Germany, 24-28 Mar. 2014.
[31] M. W. Phyu, Low-Voltage Low-Power CMOS Flip-Flops, Ph.D. Thesis, Nanyang Technological University, 2009.
[32] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th Edition, Addison-Wesley, 2010.
[33] N. Nedovic, W. W. Walker, and V. G. Oklobdzija, "A test circuit for measurement of clocked storage element characteristics," IEEE J. of Solid-State Circuits, vol. 39, no. 8, pp. 1294-1304, Aug. 2004.
[34] V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic, Digital System Clocking: High-Performance and Low-Power Aspects, John Wiley & Sons, 2005.
[35] D. M. Harris, "Sequential element timing parameter definition considering clock uncertainty," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2705-2708, Nov. 2014.
[36] A. Islam and M. Hasan, "A technique to mitigate impact of process, volatge and temperature variations on design metrcis of SRAM cell," Microelectronics Reliability, vol. 52, no. 2, pp. 405-411, Feb. 2012.