یک روش جدید سنتز فرکانس پالس شکل موج بر پایه مدولاسیون فرکانس پالس با استفاده از مشخصه فرکانس- بهره IPT
الموضوعات :محمدحسن عامری 1 , علی یزدیان ورجانی 2 , مصطفی محمدیان 3
1 - دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
3 - دانشگاه تربیت مدرس
الکلمات المفتاحية: انتقال القایی توان مدولاسیون فرکانس پالس مبدل تکفاز مدار رزونانس,
ملخص المقالة :
انتقال القایی توان یکی از تکنولوژیهای برتر اخیر میباشد که به کمک آن میتوان اتصالات الکتریکی را در هنگام انتقال انرژی الکتریکی حذف کرد. کاربردهای متنوعی از این تکنولوژی ارائه شده که یکی از آنها تغذیه بارهای ac در قالب G2V و موتورهای تکفاز است. برای تغذیه بارهای ac، توان خروجی مبدل القایی توان پس از یکسوشدن در اختیار یک اینورتر قرار میگیرد. تبدیل متوالی dc/ac/dc/ac در فرایند انتقال القایی توان سبب کاهش بازده IPT میشود که بخشی از این کاهش بازده ناشی از تلفات کلیدزنی در IPT میباشد. برای ساخت شکل موج ولتاژ ac دلخواه با THD قابل قبول از یک منبع ولتاژ dc، فرکانس کلیدزنی میبایست چندین برابر فرکانس موج مرجع باشد. در این مقاله بر اساس مشخصه بهره- فرکانسIPT ، روش جدید سنتز شکل موج PFSW بر پایه مدولاسیون فرکانس پالس ارائه میشود. روش PFSW تلفات کلیدزنی اینورتر سمت ثانویه را قابل صرف نظر کردن میکند. همچنین نشان داده میشود که روش PFSW علاوه بر کاهش تلفات کلیدزنی، سبب کاهش مجموع توان المان کلیدزنی (TSDP) برای مبدلهای سمت ثانویه IPT و افزایش طول عمر مبدلهای به کار رفته میشود. در این مقاله صحت ادعای بیانشده از طریق روابط ریاضی و بررسی نتایج نمونه آزمایشگاهی اثبات میشود.
[1] H. Sakamoto, K. Harada, Y. Matsuo, and F. Nakao, "Large air-gap coupler for inductive charger," IEEE Trans. on Magnetics, vol. 35, no. 5, pp. 3526-3528, Sep. 1999.
[2] A. Umenei and J. Schwannecke, "Novel method for selective nonlinear flux guide switching for contactless inductive power transfer," IEEE Trans. on Magnetics, vol. 48, no. 7, pp. 2192-2195, Jul. 2012.s [3] J. Acero, et al., "Analysis of the mutual inductance of planar-lumped inductive power transfer systems," IEEE Trans. on Ind. Electron.,vol. 60, no. 1, pp. 410-420, Jan. 2013.
[4] M. H. Ameri, A. Yazdian Varjani, and M. Mohamadian, "A novel algorithm for tracking maximum inductive transferred power point," in Proc. 4th Power Electronics, Drive Systems & Technologies Conf., PEDSTC'13, pp. 372-377, 13-14 Feb. 2013.
[5] R. Azambuja, V. J. Brusamarello, S. Haffner, and R. W. Porto, "Full four capacitor circuit compensation for inductive power transfer," in Proc. 2013 IEEE Int. Instrumentation and Measurement Technology Conf., I2MTC'13, pp. 183-187, 6-9 May 2013.
[6] M. Pinuela, et al., "Maximizing dc-to-load efficiency for inductive power transfer," IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2437-2447, May 2013.
[7] H. Hao, G. Covic, M. Kissin, and J. Boys, "A parallel topology for inductive power transfer power supplies," IEEE Trans. on Power Electron., vol. 29, no. 3, pp. 1140-1151, Mar. 2014.
[8] U. Madawala and D. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Trans. on Ind. Electron., vol. 58, no. 10, pp. 4789-4796, Oct. 2011.
[9] C. Kim, S. Member, D. Seo, J. You, and J. Park, "Design of a contactless battery charger for cellular phone," IEEE Trans. on Ind. Electron., vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[10] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, "A series-tuned inductive-power-transfer pickup with a controllable ac-voltage output," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98-109, Jan. 2011.
[11] U. K. Madawala, M. Neath, and D. J. Thrimawithana, "A power-frequency controller for bidirectional inductive power transfer systems," IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 310-317, Jan. 2013.
[12] T. Imura and Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula," IEEE Trans. on Ind. Electron., vol. 58, no. 99, pp. 4746-4752, Oct. 2011.
[13] J. Ma, Q. Yang, and H. Chen, "Transcutaneous energy and information transmission system with optimized transformer parameters for the artificial heart," IEEE Trans. on Appl. Supercond., vol. 20, no. 3, pp. 798-801, Jun. 2010.
[14] S. Hasanzadeh and S. Vaez-Zadeh, "Resonance based contactless energy transfer," in Proc. 3rd Power Electronics and Drive Systems Technology, PEDSTC'12, pp. 441-447, 15-16 Feb. 2012.
[15] S. Hasanzadeh and S. Vaez-Zadeh, "Enhancement of overall coupling coefficient and efficiency of contactless energy transmission systems," in Proc. 2nd Power Electronics, Drive Systems and Technologies Conf., PDSTC'11, pp. 638-643, 16-17 Feb. 2011.
[16] U. Madawala, "A power-frequency controller for bidirectional inductive power transfer systems," IEEE Trans. on Ind. Electron., vol. 60, no. 1, pp. 310-317, Jan. 2011.
[17] A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems, Prentice-Hall, p. 796, 1983.
[18] H. Ghoreishy, A. Y. Varjani, S. Farhangi, and M. Mohamadian, "A novel pulse-width and amplitude modulation (PWAM) control strategy for power converters," J. Power Electron., vol. 10, no. 4, pp. 374-381, Jul. 2010.
[19] Z. Yu, A. Mohammed, and I. Panahi, "A review of three PWM techniques," in Proc. of the 1997 American Control Conf., vol. 1, pp. 257-261, 4-6 Jun. 1997.
[20] S. M. Dehghan, M. Mohamadian, and A. Y. Varjani, "A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and Z source inverter," IEEE Trans. on Energy Conversion, vol. 24, no. 3, pp. 714-724, Sept. 2009.
[21] M. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, "Comparison of traditional inverters and Z-source inverter for fuel cell vehicles," IEEE Trans. on Power Electronic , vol. 22, no. 4, pp. 1453-1463, Jul. 2007.
[22] US Dept. of Defense, Military Handbook, Reliability Prediction of Electronic Equipment, MILHDBK-217F, pp. 1-23, 1991.