یک روش جدید مبتنی بر معیارهای آماری توزیع برای تنظیم خودکار نرخ یادگیری اتوماتای یادگیر در محیطهای پویا
الموضوعات :محمدرضا ملاخلیلی میبدی 1 , محمدرضا میبدی 2
1 - دانشگاه آزاد اسلامی، واحد میبد
2 - دانشگاه صنعتی امیرکبیر
الکلمات المفتاحية: اتوماتای یادگیر نرخ یادگیری پویا تنظیم نرخ یادگیری نابرابری چبیشف,
ملخص المقالة :
یکی از مسایل مطرح در ساخت سیستمهای یادگیر نظیر شبکههای عصبی و یا اتوماتای یادگیر، تعیین نرخ یادگیری است. در اکثر موارد از یک الگوریتم کاهشیابنده در طول زمان برای تنظیم نرخ یادگیری استفاده میشود. در این مقاله یک روش جدید برای تغییر نرخ یادگیری و انطباق سیستم یادگیرنده با وضعیت محیط، برای استفاده در اتوماتای یادگیر پیشنهاد شده است. این روش جدید از برخی معیارهای آماری مربوط به توزیع فعلی به دست آمده برای بردار احتمالات متناظر با اقدامهای اتوماتا به منظور تعیین افزایش یا کاهش نرخ یادگیری استفاده میکند. مزیت این روش در آن است که بر خلاف روشهای موجود فعلی، در طول فرایند یادگیری هم افزایش و هم کاهش مقدار نرخ یادگیری را - بسته به نتایج مقایسه معیارهای آماری - انجام میدهد و به صورت خودکار نرخ یادگیری را تنظیم میکند. ضمن تشریح مبانی ریاضی این الگوریتم جدید، عملکرد این الگوریتم را در محیطهای تصادفی نمونه بررسی کرده و با مقایسه نتایج به دست آمده نشان دادهایم روش پیشنهادی جدید به دلیل این که در طول زمان یادگیری، همزمان و بر اساس معیارهای تعیینشده، افزایش و کاهش نرخ یادگیری را انجام میدهد، از انعطافپذیری بیشتری نسبت به روشهای قبلی برای انطباق با محیطهای تصادفی پویا برخوردار است و مقادیر یاد گرفته شده به مقادیر حقیقی نزدیکتر هستند.
[1] H. Beigy, M. R. Meybodi, and M. B. Menhaj, "Adaptation of learning rate in back propagation algorithm using fixed structure learning automata," in Proc. 6th Iranian Conf. on Electrical Engineering, pp. 117-123, Tehran, Iran, 1998.
[2] H. Shah-Hosseini and R. Safabaksh, "Automatic adjustment of learning rates of the self-organizing feature map," Scientia Iranica, vol. 8, no. 4, pp. 277-286, Oct. 2001.
[3] C. Chinrungrueng and C. H. Sequin, "Optimal adaptive k - means algorithm with dynamic adjustment of learnig rate," IEEE Trans. on Neural Networks, vol. 6, no. 1, pp. 157-169, Jan. 1995.
[4] J. Akbari Torkestani and M. R. Meybodi, "Learning automata - based algorithms for solving stochastic minimum spanning tree problem," Applied Soft Computing, vol. 11, no. 6, pp. 4064-4077, Sep. 2011.
[5] J. Akbari Torkestani and M. R. Meybodi, "Learning automata - based algorithms for finding minimum weakly connected dominating set in stochastic graphs," International J. of Uncertainty, Fuzziness, and Knowledge - Based Systems, vol. 18, no. 6, pp. 721-758, Dec. 2010.
[6] H. Beigy and M. R. Meybodi, "Utilizing distributed learning automata to solve stochastic shortest path problems," International J. of Uncertainty, vol. 14, no. 5, pp. 591-615, Oct. 2006.
[7] M. R. Mollakhalili Meybodi and M. R. Meybodi, "A new distributed learning automata based algorithm for solving stochastic shortest path," in Proc. 6th Conf. on Intelligent Systems, Kerman, Iran, 26-27 Nov. 2004.
[8] M. R. Meybodi and H. Beigy, "Solving stochastic shortest path problem using distributed learning automata," in Proc. 6th Annual CSI Computer Conf., CSICC 2001, pp. 70-86, Isfehan, Iran, Feb. 2001.
[9] H. Beigy Intelligent Channel Assignment in Cellular Networks: A Learning Automata Approach, Ph.D. Thesis, Amirkabir University of Technology, 2004.
[10] M. L. Thathachar and P. S. Sastry, "Varieties of learning automata: an overview," IEEE Trans. on Systems, Man, and Cybernetics, Part B, Cybernetics, vol. 32, no. 6, pp. 711-22, Jan. 2002.
[11] K. S. Narenda and M. A. L. Thatacher, Learning Automata, Prentice - Hall, 1989.
[12] M. L. Tsetlin, "On the behaviour of finite automata in random media," Automata., Telemekh., vol. 22, pp. 1345-1354, Oct. 1961.
[13] B. J. Oomen and H. Masum, "Switching models for nonstationary random environments," IEEE Trans. on Systems, Man, and Cybernetics., vol. 25, no. 9, pp. 1334-1347, Sep. 1995.
[14] K. S. Narendra and M. A. L. Thathachar, "On the behavior of a learning automaton in a changing environment with application to telephone traffic routing," Systems, Man, and Cybernetics, IEEE Trans. on, vol. 10, no. 5, pp. 262-269, May 1980.
[15] S. M. Ross, Introduction to Probability and Statistics dor Engineers and Scientists, 3rd. Elsevier Academic Press, 2004.
[16] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd Ed. New York, USA: McGrawHill, 1991.