مکانيابي منابع توليد پراکنده در شبکههاي توزيع انرژي الکتريکي در حضور عدم قطعيتها
الموضوعات :حميد فلقی 1 , محمودرضا حقیفام 2 , محسن پارسامقدم 3
1 - دانشگاه بیرجند
2 - دانشگاه تربیت مدرس
3 - دانشگاه تربیت مدرس
الکلمات المفتاحية: بهينهسازي با معيارهاي چندگانهريسکعدم قطعيتفازيمنابع توليد پراکنده,
ملخص المقالة :
در اين مقاله مسأله تعيين تعداد، موقعيت و ظرفيت منابع توليد پراکنده در شبکههاي توزيع انرژي الکتريکي در حضور عدم قطعيت در اطلاعات بار و قيمت برق بازار انتقال، در قالب يک مدل رياضي با معيارهاي چندگانه فرمولهبندي شده است. اهداف مکانيابي در مدل پيشنهادي عبارتند از: 1) کمينهسازي هزينههاي سرمايهگذاري و بهرهبرداري، 2) کاهش ريسکهاي فني سيستم و 3) کاهش ريسک اقتصادي ناشي از عدم قطعيتها. براي مدلسازي عدم قطعيتها از تئوري مجموعههاي فازي استفاده شده است. مدل رياضي پيشنهادي توسط ويرايش خاصي از الگوريتم ژنتيک حل شده است. نتايج اجراي مدل و روش پيشنهادي روي يک شبکه توزيع نمونه ارائه گرديده است.
[1] P. A. Daly and J. Morrison, "Understanding the potential benefits of distributed generation on power delivery systems," in Proc. Rural Electric Power Conf., pp. A2/1–A2/13, 2001.
[2]T. Ackermann, G. Andersson, and L.Soder, "Distributed generation: a definition," Electric Power System Research, vol. 57, no. 3, pp. 195-204, Apr. 2001.
[3]P. P. Barker, "Determining the impact of distributed generation on power systems: part 1-radial distribution systems," in Proc. IEEE Power Engineering Society Summer Meeting, vol. 3, pp. 1645-1656, Seattle, WA, 2000.
[4]K. -H. Kim, Y. -J. Lee, S. -B. Rhee, S. -K. Lee, and S. -K. You, "Dispersed generator placement using fuzzy- GA in distribution systems," in Proc. 2002 IEEE Power Engineering Soc. Summer Meeting, vol. 3, pp. 1148-1153, Chicago, US, Jul. 2002.
[5]T. Griffin, K. Tomsovic, D. Secrest, and A. Law, "Placement of dispersed generations systems for reduced losses," in Proc. 33rd Annu. Hawaii Int. Conf. Systems Sciences, vol. 4, pp. 9, Maui, US, 4-7 Jan. 2000.
[6]A. Silvestri, S. Berizzi, and S. Buonanno, "Distributed generation planning using genetic algorithms," in Proc. IEEE PowerTech Budapest 99, p. 257, 29 Aug.-2 Sep. 1999.
[7]C. Wang and M. H. Nehrir, "Analytical approaches for optimal placement of distributed generation sources in power systems," IEEE Trans. on Power Systems, vol. 19, no. 4, pp. 2068-2076, Nov. 2004.
[8]H. L. Willis, "Analytical methods and rules of thumb for modeling DG-distribution interaction," in Proc. 2000 IEEE Power Engineering Society Summer Meeting, vol. 3, pp. 1643-1644, Seattle, US, Jul. 2000.
[9]N. S. Rau and Y. H. Wan, "Optimum location of resources in distributed planning," IEEE Trans. on Power Systems, vol. 9, no. 4, pp. 2014-2020, Nov. 1994.
[10]J. O. Kim, S. W. Nam, S. K.Park, and C. Singh, "Dispersed generation planning using improved hereford ranch algorithm," Electric Power System Research, vol. 47, no. 1, pp. 47-55, Oct. 1998.
[11]G. Celli, E. Ghaiani, S. Mocci, and F. Pilo, "A multiobjective evolutionary algorithm for the sizing and siting of distributed generation," IEEE Trans. on Power Systems, vol. 20, no. 2, pp. 750-757, May 2005.
[12]R. E. Brown, J. Pan, X. Feng, and K. Koutlev, "Siting distributed generation to defer T&D expansion," in Proc. IEEE Transmission and Distribution Conf. and Expo., vol. 2, pp. 622-627, 28 Oct.-2 Nov. 2001.
[13]W. El-Khattam, K. Bhattacharya, Y. Hegazy, and M. M. A. Salama, "Optimal investment planning for distributed generation in a competitive electricity market," IEEE Trans. on Power Systems, vol. 19, no. 3, pp. 1674-1684, Aug. 2004.
[14]D. Das, "A noniterative load flow algorithm for radial distribution networks using fuzzy set approach and interval arithmetic," Electric Power Components and Systems, vol. 33, no. 1, pp. 59-72, Jan. 2005.
[15]D. S. Popovic and Z. N. Popovic, "A risk management procedure for supply restoration in distribution networks," IEEE Trans. on Power Systems, vol. 19, no. 1, pp. 221-228, Feb. 2004.
[16]J. Ramirez-Rosado and J. A. Domigez-Navaro, "Possibilistic model based on fuzzy sets for the ultiobjective optimal planning of electric power distribution networks," IEEE Trans. on Power Systems, vol. 19, no. 4, pp. 1801-1810, Nov. 2004.
[17]J. Ramirez-Rosado and J. A. Domigez-Navaro, "Distribution planning of electrical energy using fuzzy models," Int. J. of Power and Energy Systems, vol. 16, no. 2, pp. 49-55, 1996.
[18]J. Nazarko and W. Zalewski, "The fuzzy regression approach to peak load estimation in power distribution systems," IEEE Trans. on Power Systems, vol. 14, no. 3, pp. 809-814, Aug. 1999.
[19]D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, "A compensation-based power flow method for weakly meshed distribution and transmission networks," IEEE Trans. on Power Systems, vol. 3, no. 2, pp. 753-762, May 1998.
[20]K. Kauhaniemi, "Fuzzy models and techniques for the calculation of radial distribution networks," in IEEE/NTUA Athens Power Tech. Conf., vol. 1, pp. 423-428, Athens, Greece, Sep. 1993.
[21]P. N. Vovos, A. E. Kiprakis, A. R. Wallace, and G. P. Harrison, "Centralized and distributed voltagecontrol: impact on distributed generation penetration," IEEE Trans. on Power Systems, vol. 22, no. 1, pp. 476-483, Feb. 2007.
[22]K. Deb, S. Agrawal, and A. Pratap, A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, Indian Inst. Technol., Kanpur, India, Tech. Rep. 200 001, 2000.
[23]D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
[24]T. P. Bagchi, Multiobjective Scheduling by Genetic Algorithms, Boston, MA: Kluwer, 1999.
[25]E. El-Hawary, Electric Power Applications of Fuzzy Systems, New York: IEEE Press, 1998.
[26]Y. J. Lai and C. L. Hwang, Fuzzy Multiple Objective Decision Making, Methods and Applications , Berlin, Germany: Springer-Verlag, 1994.
[27]Y. L. Lai and C. L. Hwang, Fuzzy Mathematical Programming, Berlin, Germany: Springer-Verlag,1992.
[28]H. Quintana, H. K. Temraz, and K. W. Hipel, "Two-stage powersystem-distribution-planning algorithm," IEE Proc. C, Generation, Transmission, and Distribution, vol. 140, no. 1, pp. 17-29, Jan. 93.