طبقهبندي کننده چندمنظوره گروه ذرات
الموضوعات :
1 - دانشگاه بیرجند
الکلمات المفتاحية: بهينهسازي چندمنظوره گروه ذراتتشخيص الگوطبقهبندي کنندههوش جمعي,
ملخص المقالة :
در اين تحقيق با استفاده از روش بهينهسازي چندمنظوره گروه ذرات طبقهبندي کنندهاي ارائه شده است که همزمان قادر به بهينهسازي شاخصهاي متفاوت و مهمي در تشخيص الگو نظير قابليت اطمينان، نرخ تشخيص صحيح و تعداد ابرصفحههاي لازم براي مرزبندي مؤثر کلاسهاي متفاوت در فضاي ويژگي ميباشد. در طراحي طبقهبندي کننده پيشنهادشده مسايل مهم فوق-برازش و فوق-آموزش نيز برطرف شده است. توانايي دستيابي همزمان به شاخصهاي مذکور در ساير طبقهبندي کنندههاي مبتني بر روشهاي هوش جمعي وجود ندارد. نتايج عملي به دست آمده بر روي دادههاي آزمايشي نشان ميدهند که طبقهبندي کننده چندمنظوره پيشنهادي با تخمين جبهة پَرِتو بهترين مجموعه انتخابي از ابرصفحههاي جداکننده کلاسهاي مختلف را براي برپايي شرايط دلخواه کاربر در خصوص انتخاب شاخصهاي فوقالذکر، فراهم ميآورد.
[1] S. H. Zahiri and S. A. Seyedin, "Particle swarm classifiers," in Proc. of the 13th Iranian Conf. of Elec. Eng., ICEE 2005, pp. 454-458, Zanjan, Iran, 2005.
[2] S. H. Zahiri and S. A. Seyedin, "Intelligent particle swarm classifier," Iranian J. of Electrical and Computer Engineering, vol.4, no. 5, Winter-Spring, 2005.
[3] S. H. Zahiri and S. A. Seyedin, "Swarm intelligence based classifiers," Accepted for Publication by the J. of the Franklin Institute, Available online at Elsevier scincedirect from May 2006.
[4] C. A. C. Coello and M. S. Lechuga, "MOPSO: a proposal for multiple objective particle swarm optimization," in Proc of the 2002 Congress on Evolutionary Computation, CEC '02, vol. 2, pp. 1051-1056, May 2002.
[5] S. L. Ho, S. Yang, N. Guangzheng, E. W. C. Lo, and H. C. Wong, "A particle swarm optimization-based method for multiobjective design optimizations," IEEE Trans. on Magnetic, vol. 41, no. 5, pp. 1756-1759, May 2005.
[6] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. on Evolutionary Computation, vol. 8, no. 3, pp. 256-279, Jun. 2004.
[7] J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE Intl. Conf. on Neural Networks IV, pp. 1942-1948, 1995.
[8] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Proc. of the 1999 Cong. on Evolutionary Computation, pp. 1945-1950, 1999.
[9] R. C. Eberhart and Y. Shi, "Tracking and optimizing dynamic systems with particle swarms," in Proc. of the 2001 Cong. on Evolutionary Computation, vol. 1, pp. 94-100, 2001.
[10] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesely, Reading MA, 1974.
[11] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen, vol. 7, pp. 179-188, 1936.
[12] , UCI Machine Learning Databases, University of California, Irvine, via anonymous ftp:ftp.ics.uci.edu/pub/machine-learning-databases.
[13] D. J. Strausberger, F. D. Garber, N. F. Chamberlain, and E. K. Walton, "Modeling and performance of HF/OTH radar target classification systems," IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 2, pp. 396-402, Apr. 1992.
[14] M. A. Morgan, "Target I. D. using natural resonance, a new concept for future radar systems," IEEE Potential, pp. 11-14, Dec. 1993.
[15] N. F. Chamberlain, E. K. Walton, and F. D. Garber, "Radar target identification of aircraft using polarization-diverse features," IEEE Trans. on Aerospace and Electronic Systems, vol. 27, no. 1, pp. 58-66, Jan. 1991.
[16] M. R. Bell and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Trans. on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 73-87, Jan. 1993.
[17] J. Martin and B. Mulgrew, "Analysis of the theoretical radar returned signal from aircraft propeller blades," in Proc. of the IEEE Int. Radar Conf., pp. 569-572, 1990.