ارزیابی کارایی ساختار داخلی واحدهای تصمیم گیرنده در گذشته ، حال و آینده با استفاده از تحلیل پوششی دادههای شبکهای پویا و شبکه عصبی مصنوعی
الموضوعات :جواد نیک نفس 1 , محمد علی کرامتی 2 , جلال حقیقت منفرد 3
1 - دانشگاه آزاد اسلامی واحد تهران مرکزی
2 - دانشگاه آزاد اسلامی واحد تهران مرکزی
3 - دانشگاه آزاد اسلامی واحد تهران مرکزی
الکلمات المفتاحية: تحلیل پوششی دادهای شبکهای, تحلیل پوششی دادهای شبکهای پویا, شبکه عصبی مصنوعی, ارزیابی کارایی, بانک,
ملخص المقالة :
مدلهای تحلیل پوششی دادهای شبکهای و مدلهای تحلیل پوششی دادهای شبکهای پویا نمیتوانند کارایی آینده ساختار داخلی واحدهای تصمیمگیرنده را در آینده ارزیابی نمایند. به عبارت دیگر همه مدلهای شبکهای و شبکهای پویا عملکرد گذشته واحدها و ساختار درونی آنها را ارزیابی کرده و کارایی و ناکارایی آنها را سنجش میکنند و در نهایت بر اساس آن ارزیابی، رتبهبندی مینمایند. در این مقاله برآنیم که کارایی بخشهای جمعآوری سپرده و وامدهی در شعب بانک را در آیندهارزیابی کنیم. تا بتوانیم ناکارایی در ساختار درونی یک واحد را قبل از وقوع مطلع شده و از آن جلوگیری نماییم. این رویکرد میتواند نقش مدیران را از ناظر و ارزیاب به برنامهریز تغییر دهد. ابتدا با استفاده از ادبیات موضوع و نظر خبرگان ساختار درونی شعب بانک و متغیرهای شبکه در آن مشخص شد. سپس مقادیر متغیرها با استفاده از شبکه عصبی مصنوعی برای دو دوره آتی پیشبینیشده است. و در نهایت یک مدل شبکهای پویا با استفاده از مقادیر دورههای گذشته و مقادیر پیشبینیشده فرموله شده و با استفاده از آن کارایی شعب و ساختار داخلی آن در گذشته، حال و آینده ارزیابی شده است.
1- رضا سلیمانی دامنه، منصور مومنی، امین مصطفایی، & محسن رستمی مال خلیفه. توسعه يك مدل تحلیل پوششی دادههای شبکهای پویا برای ارزیابی عملکرد بانکها. چشم انداز مدیریت صنعتی، 7(1), 67-89.
2- Akther, S., Fukuyama, H., & Weber, «Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking». Omega,41(1), 88-96.4.
3- Avkiran, N.K., (2015). «An illustration of dynamic network DEA in commercial banking including robustness tests ». Omega, 55, 141-150.
4- Banker, R. D., Charnes, A., Cooper, W. W., (1984). «some models for estimating technical and scale inefficiencies in data envelopment analysis». Management Science. 30(9), 1078-1092.
5- Berger, A. N., & Humphrey, D. B. (1997). «Efficiency of financial institutions:International survey and directions for future research». European Journal of Operational Research, 98, 175–212.
6- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). «Measuring the efficienc of decision making units». European Journal of Operational Research, 2, 429-444.
7- Chen, C., Yan, H., (2011). «Network DEA model for supply chain performance evaluation». European Journal of Operational Research, 213(1), 147–55.
8- Chen, Y., Cook, W. D., Li, N., Zhu, J., (2009). «Additive efficiency decomposition in two-stage DEA». European Journal of Operational Research, 196(3), 1170-1176.
9- Chun Tsai, M., Ping Lin, S., Chan Cheng, C., Ping Lin, Y., 2009. «The consumer loan default predicting model-An application of DEA-DA and neural network». Expert System. Appl. 36 (4), 11682e11690.
10- Cook, W. D., Zhu, J., Bi, G., Yang, F., (2010). «Network DEA: additive efficiency decomposition». European Journal of Operational Research, 207(2), 11-22.
11- Drake, L., Hall, M., & Simper, R. (2009). «Bank modelling methodologies: Acomparative non-parametric analysis of efficiency in the Japanese banking secto»r. Journal of International Financial Institutions and Money, 19(1), 1-15.
12- Desheng, W.U., Yang, Z., Liang, L., 2006. «Using DEA-neural network approach to evaluate branch efficiency of a large Canadian bank». Expert Syst. Appl. 31 (1) 108e115.
13- Du, J. A., Liang, L. A., Chen, Y., Cook, W. D., Zhu, J., (2011). «A bargaining game model for measuring performance of two-stage network structures». European Journal of Operational Research, 210 (2), 390-397.
14- Emrouznejad, A., Shale, E., 2009. «A combined neural network and DEA for measuring efficiency of large scale datasets». Comput. Ind. Eng. 56 (1), 249e254.
15- Färe, R., (1991). «Measuring Farrell efficiency for a firm with intermediate inputs». Academia Economic Papers, 19, 329-340.
16- Färe, R., Grosskopf, S., (1996). «Productivity and intermediate products: A frontier approach». Economics letters, 50(1), 65-70.
17- Fare, R., & Grosskopf, S. (2000). «Network DEA. Socio-Economic Planning Sciences», 34, 35-49.
18- Färe, R., Whittaker, G., (1995). «an intermediate input model of dairy production using complex survey data». Journal of Agricultural Economics, 46(2), 201-213.
19- Farsijani, H., Arman, M.H., Hoseinbeigi, A. & Jalili, A. (2011). «Presenting DEA model by input-output oriented approach». Journal of Industrial Management Perspective, 1, 39-56.
20- Fukuyama, H., & Matousek, R. (2016). «Modelling Bank Performance: A Network DEA Approach», European Journal of Operational Research, doi: 10.1016/j.ejor.2016.10.044
21- Fukuyama, H., & Weber, W. L. (2009a). «Estimating indirect allocative inefficiency and productivity change». Journal of the Operational Research Society, 60(11), 1594–1608.
22- Fukuyama, H., & Weber, W. L. (2009b). «A directional slacks-based measure of technical inefficiency». Socio-Economic Planning Sciences, 43(4), 274–287.
23- Fukuyama, H., & Weber, W. L. (2010). «A slacks-based inefficiency measure for a twostage system with bad outputs». Omega, 38(5), 239–410.
24- Fukuyama, H., & Weber, W.L. (2015a). «Measuring Japanese bank performance: A dynamic network DEA approach». Journal of Productivity Analysis, 44(3), 249-264.
25- Fukuyama, H., & Weber, W.L. (2016a). «Japanese bank productivity, 2007- 2012: A dynamic network approach. Mimeo».
26- Holod, D., & Lewis, H. F. (2011). «Resolving the deposit dilemma: A new DEA bank efficiency mode». Journal of Banking and Finance, 35, 2801-2810.
27- Ibiwoye, A., Ajibola, E., Sogunro, A.B., 2012. «Artificial neural network model for predicting insurance insolvency». Int. J. Manag. Bus. Res. 2 (1), 59e68.
28- Jahanshahloo, G. R., Hadi-Vencheh, A., Foroughi, A. A., Kazemi-Matin, R., (2004). «Inputs/ outputs estimation in DEA when some factors are undesirable». Applied Mathematics and Computations, 156(1), 19–32.
29- Kao, C., (2009). «Efficiency decomposition in network data envelopment analysis: A relational mode»l. European Journal of Operational Research, 192(3), 949–962.
30- Kao, C. (2009b). «Efficiency measurement for parallel production systems». European Journal of Operational Research, 196, 1107-1112.
31- Kao, C. (2014a). «Efficiency decomposition for general multi-stage systems in data envelopment analysis». European Journal of Operational Research, 232, 117- 124.
32- Kao, C. (2014). «Network data envelopment analysis: A review». European journal of operational research, 239(1), 1-16.
33- Kao, C., Hwang, S. N., (2008). «Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan». European Journal of Operational Research, 185(1), 418-429.
34- Kao, C., & Hwang, S. N. (2010). «Efficiency measurement for network systems: IT impact on firm performance». Decision Support Systems, 48, 437-446.
35- Kao, C., & Liu, S. T. (2014). «Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks». Omega, 47, 90-98.
36- Kao, C., & Liu, S. (2009). «Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks». European Journal of Operational Research, 196(1), 312-322.
37- Khushalani, J., & Ozcan, Y. A. (2017). «Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA) ». Socio-Economic Planning Sciences, 60, 15-23.
38- Krakovsky, R., Forgac, R., 2011. «Neural network approach to multidimensional data classification via lustering». In: IEEE. 9th International Symposium on Intelligent Systems and Informatics, pp. 169e174.
39- Lewis, H. F., & Sexton, T. R. (2004). «Network DEA: efficiency analysis of organizations with complex internal structure». Computers and Operations Research, 31(9), 1365-1410.
40- Liang, L., Cook, W. D., Zhu, J., (2008). «DEA models for two- stage processes: Game approach and efficiency decomposition». Naval Research Logistics (NRL), 55(7), 643-653.
41- Lin, T. Y., & Chiu, S. H. (2013). «Using independent component analysis and network DEA to improve bank performance evaluation». Economic Modelling, 32, 608-616.
42- Liu, S. T. (2009). «Slacks-based efficiency measures for predicting bank performance. Expert Systems with Applications, 36(2), 2813–2818.
43- Lozano, S. (2016). «Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector». Omega, 60, 73-84.
44- Luo, X. M. (2003). «Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis». Journal of Business
45- Lu, P., Rosenbaum, M.S., 2003. «Artificial neural network and grey system for the prediction of slope stability». Nat. Hazards 30 (3), 383e398.
46- McCulloch, W., Pitts, W., 1943. «A logical calculus of the ideas immanent in nervous activity». Bull. Math. Biophys. 5 (4), 115e133.
47- Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2008. «Artificial neural networks and cluster analysis in landslide susceptibility zonation». Geomorpho 94 (3),379e400.
48- Moreno, P. & Lozano, S. (2016). «Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services». International Transactions In Operational Research, 1-21.
49- Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. «Learning representations by back propagating errors». Nature 323 (6088), 533e536.
50- Seiford, L. M., & Zhu, J. (1999). «Profitability and marketability of the top 55 US commercial banks». Management Science, 45, 1270-1288.
51- Soleymani Mal Khalifeh, R., Momeni, M, Mostafaee, A. & Soleymani Mal Khalifeh, M. (2017). «Presenting Dynamic NDEA model For Evaluation Efficiency of Banks». Journal of Industrial Management Perspective, 25, 67-89. (In Persian)
52- Soltanzadeh, E., & Omrani, H. (2018). «Dynamic network data envelopment analysis model with fuzzy inputs and outputs: An application for Iranian Airlines». Applied Soft Computing, 63, 268-288.43.
53- Tone, k., & Tsutsui, M. (2010). «Dynamic DEA: A slacks-based measure approach». Omega, 38, 3-4.
54- Tone, T., & Tsutsui, M. (2014). «Dynamic DEA with network structure: A slacks-based measure approach». Omega, 42, 124-131.
55- Tone, K., & Tsutsui, M. (2009). «Network DEA: A slacks-based measure approach». European Journal of Operational Research, 197, 243-252.
56- Wacker, J. G. (1998). «A definition of theory: research guidelines for different theory-building research methods in operations management». Journal of Operations Management, 16(4), 361-385.
57- Wu, Y., Ting, I., Lu, W., Nourani, M. & Kweh, Q. (2016). «The impact of earnings management on the performance of ASEAN banks». Economic Modelling, 53, 156-165.
58- Zhang, G.P., 2000. «Neural networks for classification: a survey». IEEE Trans. Syst. Man. Cybern. C. Appl. Rev. 30 (4), 451e462.
59- Zhang, W.J., 2011. «Simulation of arthropod abundance from plant composition». Comput. Ecol. Softw. 1 (1), 37e48.
60- Zhang, W.J., Wei, W., 2009. «Spatial succession modeling of biological communities: a multi-model approach». Environ. Monit. Assess. 158 (1e4), 213e230.
61- Zha, Y., Liang, N., Wu, M. & Bian, Y. (2016). «Efficiency evaluation of banks in china: A dynamic two-stage slacks-based measure approach», Omega.
62- Zhou, Z., Sun, L., Yang, W., Liu, W., Ma, C., (2013). «A bargaining game model for efficiency decomposition in the centralized model of two-stage systems». Computers & Industrial Engineering,