پتروژنز و جایگاه تکتونوماگمایی توده گرانیتوئیدی مغانلو (شمال¬غرب ایران)
محورهای موضوعی :فاطمه نجمی 1 , لیلی فتحیان 2 , سید احمد مظاهری 3 , فرهاد آلیانی 4 , سعید سعادت 5 , علیاکبر بهاری فر 6 , اعظم انتظاری هرسینی 7 , محمدحسین زرینکوب 8
1 - دانشگاه فردوسی مشهد
2 - دانشگاه بوعلی سینا، همدان
3 - دانشگاه فردوسی مشهد
4 - دانشگاه بوعلی سینا، همدان
5 - واحد مشهد، دانشگاه آزاد اسلامی
6 - دانشگاه پیام نور تهران
7 - دانشگاه پیام نور
8 - دانشگاه بیرجند
کلید واژه: مغانلو, تونالیت پوسته زیرین ذوب بخشی ایزوتوپ Sr-Nd,
چکیده مقاله :
توده گرانیتوئیدی مغانلو با سن پرکامبرین در شمال غربی زون ساختاری ایران مرکزی واقع گردیده است. بر اساس مشاهدات صحرایی و مطالعات میکروسکوپی، توده مورد مطالعه از گرانودیوریت، مونزوگرانیت و تونالیت تشکیل شده است. با توجه به مطالعات ژئوشیمیایی، تونالیت ها از نوع I با ماهیت کالک آلکالن و پرآلومین می باشند. این توده بر اساس مطالعات ایزوتوپی Sr-Nd ( نسبت 87Sr/86Sr و Ndɛ اولیه 710544/0 و01/7- به ترتیب) ، نسبت La/Yb ،Sr/Y ، Nb/Ta، Ni و Cr پایین، الگوی کمتر تفریق یافته عناصر نادر خاکی و بیهنجاری منفی Eu حاصل ذوب پوسته آمفیبولیتی است که از ذوب پوسته مافیک ضخیم شده یا بازالت های زیر صفحه ای (در ناحیه پایداری پلاژیوکلاز) در اعماق و فشار پایین و در محیط زمین ساختی کمان های حاشیه فعال قاره ای (قوس) تشکیل شده است. مونزوگرانیت ها با توجه به نمودار های ژئوشیمیایی از نوع S با ماهیت پرآلومین و کالک آلکالن هستند که در محدوده کمان ماگمایی و برخوردی با غنیشدگی از LREE و LILE و تهی شدگی از HFSE همراه با بیهنجاری منفی Nb,Ti, Ba و Sr و عدد منیزیم (20-11#Mg ) همراه می باشند و از ذوب سنگ های پوسته ای (ذوب خاستگاه با سنگ های پلیتی غنی از پلاژیوکلاز) تشکیل شده اند. گرانودیوریت ها از نوع I با ماهیت کالک آلکالن و پرآلومین هستند. که بر اساس مطالعات ایزوتوپی Sr-Nd (نسبت 87Sr/86Sr و ɛNd اولیه 71713/0 و 55/10- به ترتیب)، عدد منیزیم (33-31#Mg) و بیهنجاری منفی و مشخص ازNb و Sr، همچنین بیهنجاری مثبت La و Th، حاصل ذوب بخشی پوسته قاره ای زیرین- میانی می باشند که در نتیجه ضخیم شدگی و کوتاه شدگی ناشی از برخورد قاره- قاره (برخورد ورقه ایران به عربی) تشکیل شدهاند. با توجه به موقعیت جغرافیایی توده مغانلو و سن واحد-های تشکیلدهنده آن، به نظر می رسد که توده گرانیتوئیدی مغانلو روی حاشیه فعال قاره ای ناشی از همگرایی ایران مرکزی و البرز- آذربایجان با صفحه عربی در طول پرکامبرین شکل گرفته باشد.
The Moghanlu granitoid was located in the northwest of central Iranian structural zone with a Precamberian age. Based on field observations and microscopic studies, this body includes tonalite, monzogranite and granodiorite. Based on geochemical studies, tonalites are I-type, calc-alkaline, and weakly peraluminous. Based on isotopic studies [(87Sr/86Sr (i) and εNd (i) values equal to 0.710544, -7.01 respectively)], low values of La/Yb, Sr/Y , Nb/Ta, Ni and Cr, low fractionated patterns (flat pattern) of rare earth elements (REE) and negative anomaly of Eu, it can be concluded that they were resulted from melting of amphibolitic thickened mafic crust or under plate basalts (in the stability field of plagioclase) in low pressures and low depth in volcanic arc granitic area. Monzogranites are S-type, peraluminous and calc-alkaline, which are plotted in collision zone. These rocks are enriched in LILE and LREE and also depleted in HFSE, which represent negative anomaly of Ba, Ti, Nb, Sr with Mg number about 11-20. On the basis of this result, it can be concluded that the granitoids were generated from melting of crustal rocks (melt derived from pelitic rocks with high plagioclase content). Granodiorite are I-type, calc-alkaline and peraluminous. They have 87Sr/86Sr (i) and εNd(i) values of 0.71713, -10.55, Mg number between 31-33, negative anomaly of Sr and Nb, and also positive anomaly of La and Th, which represent that these rocks were generated from partial melting of lower to middle crust. These granodiorites were formed because of thickening and shorting due to continental- continental collision (collision of Iranian-Arabian plates). With respect to geographical location of Moghanlu body and the age of this units, it seems that these granitoide rocks formed on active continental margin during convergence of Central Iran and Alborz-Azarbayjan plates to Arabian platform during Precambrian.
اسماعیلی، د.، 1371. بررسی پترولوژیکی و ژئوشیمیایی توده¬های دوران و مغانلو (مناطق زنجان و تکاب). رساله کارشناسی ارشد دانشکده علوم، دانشگاه تهران.148.
- شاه زیدی، م. و مؤید، م.، 1394. ژئوشیمی ایزوتوپ¬های Rb/Sr و Sm/Nd و پتروژنز توده¬های گرانیتوئیدی میشو (شمال¬غرب ایران). پترولوژی، 24، 87-114.
- لطفی، م.، 1380. نقشه زمینشناسی 1:100000 ماهنشان. سازمان زمینشناسی ایران، تهران.
- ولی زاده، م. و.و اسماعیلی، د.، 1372. پتروژنز گرانیت مغانلو. فصلنامه علوم زمین، 10، 28-39.
- هنرمند، م.، نباتیان، ق.و افلاکی، م.، 1394. مطالعه گاهشماری U-Pb زیرکن و ژئوشیمی گرانیت و ارتوگنایس منطقه مغانلو، غرب زنجان. نوزدهمین همایش انجمن زمینشناسی ایران و نهمین همایش ملی زمینشناسی دانشگاه پیام نور.
Allegre, C.J., 2008. Isotope Geology. Cambridge University Press.New York.
Atherton, M. P. and Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, 144-146.
Azizi, H., Chung, S. L., Tanaka, T. and Asahara, Y., 2011. Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambrian Research, 185(3-4), 87-94.
Babakhani, A.R. and Sadeghi, A., 2005. Geological map of Zanjan (scale 1:100,000). Geological Survey of Iran, Tehran, Iran.
Balaghi Einalou, M., Sadeghian, M., Zhai, M., Ghasemi, H., and Mohajjel, M., 2014. Zircon U–Pb ages, Hf isotopes and geochemistry of the schists, gneisses and granites in Delbar Metamorphic–Igneous Complex, SE of Shahrood (Iran): Implications for Neoproterozoic geodynamic evolutions of Central Iran. Journal of Asian Earth Sciences, 92, 92–124.
Boynton, W. V., 1984. Cosmochemistry of the rare earth elements, Development in Geochemistry, 2, 63-114.
De Almeida, J. d.A.C., Agnola, R.D., de Oliveria, M.A., Macambira, M. J. B., Pimentel, M. M., Ramo, O.T., Guimaraes, F.V.and da Silva Leite, A.A, 2011. Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implication for the growth of the Archean crust of the Carajas province, Brazil, Precambrian Research, 187, 201-221.
Debon, F and Le Fort, P, 1983. A chemical- mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences,73, 135- 149.
Falcon, N.L, 1974. Southern Iran: Zagros Mountains. In: Spencer, A.M. (Ed.), Mesozoic–Cenozoic orogenic belts, Data for orogenic studies, Geological Society of London Special Publication,4, 199–211.
Fettes, D and Desmons, J, 2007. Metamorphic Rocks: A Classification and Glossary of Terms. Cambridge University Press, 256.
Foley, S. F. and Wheller, G. E, 1990. Parallels in the origin of geochemical signatures of island arc volcanic and continental potassic igneous rocks: the role of residual titanites. Chemical Geology, 85, 1-18.
Fourcade, S, 1998. Les isotopes: effect isotopiques, base de radio- geochimie. In: Hagemann G. and Treuil M. (eds) Introduction a la Geochimies et Ses Applications. Paris: CEA, pp. 195- 265.
Gorton, M.P and Shanndle, E.S, 2000. From continental to island arc: A geochemical index of tectonic setting for arc- related and with plate felsic to intermediate volcanic rocks. Canadian. Mineral, 38, 1065-1073.
Hajalioghli, R, 2007. Petrological investigations of calc -silicate and metabasic rocks from the TakhteSolyeman complex, NE Takab area, western Iran, PhD thesis, University of Tabriz, Tabriz, Iran (in Persian).
Hassanzadeh, J., Stockli, D.F., Horton, B., Axen, G., Stockli, D., Grove, M., Schmitt, A.and Walker, D, 2008. U-Pb zircon geochronology of late Neoproterozoic- Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451, 71 – 96.
Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A.H., Fakhari, M., Zamanzadeh, S.M. and Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451, 97–122.
Hosseinia, S.H., Sadeghiana, M., Zhaib, M., and Ghasemia, H., 2015. Petrology, geochemistry and zircon U–Pb dating of Band–e–Hezarchah metabasites (NE Iran): An evidence for back–arc magmatism along the northern active margin of Gondwana. Chemie der Erde – Geochemistry: in press.
Husseini, M.I., 1989. Tectonic and deposition model of Late Precambrian–Cambrian Arabian and adjoining plates. American Association of Petroleum Geologists Bulletin, 73,1117–1131.
Irvine, T. N. and Baragar, W. R. A, 1971. A guide to the chemical classification of the common volcanic rocks, Canadian Journal of Earth Science, 8, 523-548. #Mikova, J and Denkova, P, 2007. Modified chromatographic sepration scheme for Sr and Nd isotope analysis in geological silicate sample. Journal of Geosciences, 52, 221-226.
More, D. E and Liou, J. G, 1979. Chessboard- twinned albite from Franciscan metaconglomerate of the Diablo Range, California. Am. Mineral, 64, 77- 101.
Ramezani, J and Tucker, R. D., 2003. The Saghand region, Central Iran:U-Pb geochemistry, Petrogenesis and implication for Gondwana tectonics. American Journal of Science, 303, 622- 665.
Shand, S.J, 1943. Eruptive Rocks, their Genesis, Composition, Classification, and their relations to Ore deposits. John Wiley & Sons, Inc., New York. Rocks. Geologische Rundschau, 63, 773- 786.
Stoclin, J, 1968. Structural history and tectonics of Iran: a review. American Association Petroleum Geology Bulletin., 25, 1229- 258.
Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45,29-44.
Talbot, C.J. and Alavi, M, 1996. The past of a future syntaxis across the Zagros. In: Alsop, G.I., Blundell, D.J., Davison, I. (Eds.), Salt Tectonics, Geological Society of London Special Publication, 100, 89–109.
Thompson, A. B, 1982. Magmatism of the Beritish Tertiary volcanic province. Scottish Journal of Geology, 18, 50- 107.
Verma, S. K., Pandarinath, K. and Verma, S. P, 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54, 325-347.
White, A.J. R. and Chappell, B. W, 1983. Granitoid type and their distribution in the Lachlan Fold Belt, Southeastern Australia. Geological Society of American, Memorial,159, 21-34.
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. Z., Lin, Q., Ge, W. C and Sun, D. Y, 2003. Highly fractionated I- type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67, 191- 204.