تحلیل تنش دیرین در کوه¬های بزقوش، شمال غرب ایران
محورهای موضوعی :احد نوری 1 , پریسا امینی شریفی 2 , محسن مؤید 3
1 -
2 -
3 -
کلید واژه: تنش دیرین خش لغزش ساختار فراخاسته ,
چکیده مقاله :
اطلاع از میدان تنش محلی در یک منطقه، در بررسی های ساختاری و عوامل موثر بر کینماتیک ساختارهای منطقه حائز اهمیت است. ازاینرو، در این پژوهش ضمن توضیح مبانی نظری اساسی روش وارون سازی تنش از صفحات گسل-خش لغزش، برداشت های صحرایی ناهمگن لغزش گسلی بهعنوان داده های خام برای تعیین موقعیت میانگین محورهای اصلی تنش بهمنظور تحلیل وضعیت ژئودینامیک منطقه، مورد استفاده قرار گرفته است. نتایج حاصل از حل تنسور تنش تقلیل یافته داده های گسل-خش لغزش برداشت شده، نشانگر موقعیت های 156/21، 012/64 و 251/14 برای (به ترتیب) σ1، σ2 و σ3 است. نتایج حاصل از تحلیل این داده ها، نشان می دهد که هم خوانی قابل توجهی بین سوگیری محورهای اصلی تنش محاسبه شده و پیشینه مطالعات زمینساختی منطقه، وجود دارد.
Knowledge of the local stress field in a region is important in the structural and affecting factors on structural kinematics studies. Therefore, in this paper after describing the basic theoretical principles of stress inversion method from slickensides, it was used field measured heterogeneous fault –slips as raw data to determine the average state of the principal stress axes in order to analyze the regional geodynamic situation of this area. The results of the reduced stress tensor from fault-slip measured data, show 21/156، 64/012 and 14/251 states for σ1، σ2 and σ3 axes respectively. The results of analysis of these data show substantial agreement between the determined principal stress axes and recent tectonic research in this region.
الیاسی، م. و احمدیان، س.، 1387. آرایش هندسی مسیرهای σ1 در گستره کن-کرج (بخش جنوبی البرز مرکزی) بر پایه وارون سازی چندمرحله¬ای. فصلنامه علوم زمین، 67، 149-140.
شریفی ق، ر.، 1389. بررسی ساختارهای تکتونیکی شمال گسل تبریز-زنجان. پایاننامه کارشناسی ارشد، دانشگاه تبریز، 138.
نوری م، ا.، 1392. مطالعه ساختار و سایزموتکتونیک گسل شمال تبریز (فاصله بستان¬آباد تا مرند) و برآورد تنش¬های زمین ساختی مرتبه سوم. پایاننامه کارشناسی ارشد، دانشگاه تبریز، 126.
Al Katib, N., Ataallah, M. and Diabat, A., 2010. Paleostress Analysis of the Cretaceous Rocks in Northern Jordan. Jordan Journal of Earth and Environmental Sciences, 3(1), 25- 36.
Angelier, J., 1979. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3-4), 17-T26.
Angelier, J., 1984. Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.
Angelier, J., 1989. From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11(1-2), 37-50.
Angelier, J., 1990. Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2), 363-376.
Angelier, J., 1994. Paleostress determinations. In: Hancock, P.L. (Ed.), Continental Deformation. Pergamon Press, Tarrytown, NY, 53–100.
Angelier, J.T. and Mechler, P., 1977. Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société géologique de France, 7(6), 1309-1318.
Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(02), 109-117.
Carey, E. and Brunier, B., 1974. Analyse théorique et numérique d'un modèle mécanique élémentaire appliqué à l'étude d'une population de failles. CR Acad. Sci. Paris, 279(D), 891-894.
Delvaux, D. and Barth, A., 2010. African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1), 105-128.
Delvaux, D. and Sperner, B., 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications, 212(1), 75-100.
Delvaux, D., Moeys, R., Stapel, G., Melnikov, A. and Ermikov, V., 1995. Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics, 252(1-4), 61-101.
Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V. and San'kov, V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1-4), 1-38.
Djamour, Y., Vernant, P., Nankali, H.R. and Tavakoli, F., 2011. NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1), 27-34.
Doblas, M., 1998. Slickenside kinematic indicators. Tectonophysics, 295(1), 187-197.
Dunne, W.M. and Hancock, P.L., 1994. Palaeostress analysis of small-scale brittle structures. Continental deformation, 5, 101-120.
Guiraud, M., Laborde, O. and Philip, H., 1989. Characterization of various types of deformation and their corresponding deviatoric stress tensors using microfault analysis. Tectonophysics, 170(3-4), 289-316.
Jacques, A., 2002. Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV—a new method free of choice among nodal planes. Geophysical Journal International, 150(3), 588-609.
Lisle, R.J., 1988. ROMSA: a BASIC program for paleostress analysis using fault-striation data. Computers & Geosciences, 14(2), 255-259.
Lisle, R.J., 1989. Paleostress analysis from sheared dike sets. Geological Society of America Bulletin, 101(7), 968-972.
Macheyeki, A.S., Delvaux, D., De Batist, M. and Mruma, A., 2008. Fault kinematics and tectonic stress in the seismically active Manyara–Dodoma Rift segment in Central Tanzania–Implications for the East African Rift. Journal of African Earth Sciences, 51(4), 163-188.
Nemcok, M., 1995. A stress inversion procedure for polyphase fault/slip data sets. Journal of Structural Geology, 17(10), 1445-1453.
Nieto-Samaniego, A.F. and Alaniz-Alvarez, S.A., 1997. Origin and tectonic interpretation of multiple fault patterns. Tectonophysics, 270(3-4), 197-206.
Philip, H., 1987. Plio–Quaternary evolution of the stress field in Mediterranean zones of subduction and collision. Annales Geophysicae, 301–320.
Reches, Z.E., 1987. Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition. Tectonics, 6(6), 849-861.
Sato, K. and Yamaji, A., 2006. Uniform distribution of points on a hypersphere for improving the resolution of stress tensor inversion. Journal of structural geology, 28(6), 972-979.
Soleymani Azad, S., Philip, H., Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., Tabassi, H. and Lamothe, M., 2015. Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640, 20-38.
Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J. and Fuchs, K., 2003. Tectonic stress in the Earth’s crust: Advances in the World Stress Map project. Geological Society, London, Special Publications, 212(1), 101-116.
Wallace, R.E., 1951. Geometry of shearing stress and relation to faulting. The journal of Geology, 59(2), 118-130.
Yamaji, A., 2000. The multiple inverse method applied to meso-scale faults in mid-Quaternary fore-arc sediments near the triple trench junction off central Japan. Journal of Structural Geology, 22(4), 429-440.
Zamani, B. and Masson, F., 2014. Recent tectonics of East (Iranian) Azerbaijan from stress state reconstructions. Tectonophysics, 611, 61-82.
Zoback, M.L., 1992. First‐and second‐order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8), 11703-11728.